cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A305422 GF(2)[X] factorization prime shift towards smaller terms.

Original entry on oeis.org

1, 1, 2, 1, 4, 2, 3, 1, 6, 4, 7, 2, 11, 3, 8, 1, 16, 6, 13, 4, 5, 7, 22, 2, 19, 11, 12, 3, 14, 8, 25, 1, 50, 16, 29, 6, 31, 13, 28, 4, 37, 5, 38, 7, 24, 22, 41, 2, 9, 19, 32, 11, 26, 12, 47, 3, 44, 14, 55, 8, 59, 25, 10, 1, 20, 50, 61, 16, 21, 29, 118, 6, 67, 31, 88, 13, 110, 28, 53, 4, 69, 37, 18, 5, 64, 38, 73, 7, 94, 24, 87, 22, 43, 41, 52, 2, 91
Offset: 1

Views

Author

Antti Karttunen, Jun 07 2018

Keywords

Comments

Let a x b stand for the carryless binary multiplication of positive integers a and b, that is, the result of operation A048720(a,b). With n having a unique factorization as f(i) x f(j) x ... x f(k), with 1 <= i <= j <= ... <= k, a(n) = f(i-1) x f(j-1) x ... x f(k-1), where f(0) = 1, and f(n) = A014580(n) for n >= 1.

Crossrefs

Cf. A000079 (positions of ones), A014580, A091225, A268389, A305419, A305421, A305424 (odd bisection), A305425.
Cf. also A064989, A300840.

Programs

  • PARI
    A091225(n) = polisirreducible(Pol(binary(n))*Mod(1, 2));
    A305419(n) = if(n<3,1, my(k=n-1); while(k>1 && !A091225(k),k--); (k));
    A305422(n) = { my(f = subst(lift(factor(Pol(binary(n))*Mod(1, 2))),x,2)); for(i=1,#f~,f[i,1] = Pol(binary(A305419(f[i,1])))); fromdigits(Vec(factorback(f))%2,2); };

Formula

For all n >= 1:
a(A305421(n)) = n.
a(A001317(n)) = A000079(n).
A007814(a(n)) = A268389(n).

A304529 a(1) = 0, a(2n) = n, a(2n+1) = a(A305422(2n+1)).

Original entry on oeis.org

0, 1, 1, 2, 2, 3, 1, 4, 3, 5, 1, 6, 1, 7, 4, 8, 8, 9, 1, 10, 2, 11, 11, 12, 1, 13, 6, 14, 7, 15, 1, 16, 25, 17, 7, 18, 1, 19, 14, 20, 1, 21, 19, 22, 12, 23, 1, 24, 3, 25, 16, 26, 13, 27, 1, 28, 22, 29, 1, 30, 1, 31, 5, 32, 10, 33, 1, 34, 2, 35, 59, 36, 1, 37, 44, 38, 55, 39, 13, 40, 2, 41, 9, 42, 32, 43, 1, 44, 47, 45, 1, 46, 19, 47, 26, 48, 1, 49, 50, 50
Offset: 1

Views

Author

Antti Karttunen, Jun 10 2018

Keywords

Comments

This is GF(2)[X] analog of A246277.
For all i, j: a(i) = a(j) => A278233(i) = A278233(j).
For all i, j: a(i) = a(j) => A305788(i) = A305788(j).

Crossrefs

Cf. A014580 (positions of 1's), A278233, A305788.
Cf. also A246277.

Programs

  • PARI
    A091225(n) = polisirreducible(Pol(binary(n))*Mod(1, 2));
    A305419(n) = if(n<3,1, my(k=n-1); while(k>1 && !A091225(k),k--); (k));
    A305422(n) = { my(f = subst(lift(factor(Pol(binary(n))*Mod(1, 2))),x,2)); for(i=1,#f~,f[i,1] = Pol(binary(A305419(f[i,1])))); fromdigits(Vec(factorback(f))%2,2); };
    A304529(n) = if(1==n,0,while(n%2, n = A305422(n)); n/2);

Formula

a(1) = 0, a(2n) = n, a(2n+1) = a(A305422(2n+1)).

A305424 Permutation of natural numbers: a(n) = A305422(2*n-1).

Original entry on oeis.org

1, 2, 4, 3, 6, 7, 11, 8, 16, 13, 5, 22, 19, 12, 14, 25, 50, 29, 31, 28, 37, 38, 24, 41, 9, 32, 26, 47, 44, 55, 59, 10, 20, 61, 21, 118, 67, 88, 110, 53, 69, 18, 64, 73, 94, 87, 43, 52, 91, 100, 58, 97, 56, 15, 103, 62, 82, 109, 115, 48, 23, 74, 76, 49, 98, 117, 113, 152, 131, 46, 148, 137, 143, 164, 218, 27, 96, 227, 145, 230, 89, 182, 200
Offset: 1

Views

Author

Antti Karttunen, Jun 08 2018

Keywords

Comments

Odd bisection of A305422 and A305425.

Crossrefs

Cf. A305423 (inverse).
Cf. also A064216.

Programs

  • PARI
    A091225(n) = polisirreducible(Pol(binary(n))*Mod(1, 2));
    A305419(n) = if(n<3,1, my(k=n-1); while(k>1 && !A091225(k),k--); (k));
    A305422(n) = { my(f = subst(lift(factor(Pol(binary(n))*Mod(1, 2))),x,2)); for(i=1,#f~,f[i,1] = Pol(binary(A305419(f[i,1])))); fromdigits(Vec(factorback(f))%2,2); };
    A305424(n) = A305422(n+n-1);

Formula

a(n) = A305422(2*n-1).
Showing 1-3 of 3 results.