cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A305418 Permutation of nonnegative integers: a(1) = 0, a(2n) = 1 + 2*a(n), a(2n+1) = 2*a(A305422(2n+1)).

Original entry on oeis.org

0, 1, 2, 3, 6, 5, 4, 7, 10, 13, 8, 11, 16, 9, 14, 15, 30, 21, 32, 27, 12, 17, 34, 23, 64, 33, 22, 19, 18, 29, 128, 31, 258, 61, 36, 43, 256, 65, 38, 55, 512, 25, 130, 35, 46, 69, 1024, 47, 20, 129, 62, 67, 66, 45, 2048, 39, 70, 37, 4096, 59, 8192, 257, 26, 63, 54, 517, 16384, 123, 24, 73, 16386, 87, 32768, 513, 142, 131, 8194, 77, 132, 111, 48, 1025, 42, 51
Offset: 1

Views

Author

Antti Karttunen, Jun 10 2018

Keywords

Comments

This is GF(2)[X] analog of A156552. Note the indexing: the domain starts from 1, while the range includes also zero.

Crossrefs

Cf. A305417 (inverse).
Cf. A305422.

Programs

  • PARI
    A091225(n) = polisirreducible(Pol(binary(n))*Mod(1, 2));
    A305419(n) = if(n<3,1, my(k=n-1); while(k>1 && !A091225(k),k--); (k));
    A305422(n) = { my(f = subst(lift(factor(Pol(binary(n))*Mod(1, 2))),x,2)); for(i=1,#f~,f[i,1] = Pol(binary(A305419(f[i,1])))); fromdigits(Vec(factorback(f))%2,2); };
    A305418(n) = if(1==n,(n-1),if(!(n%2),1+(2*(A305418(n/2))),2*A305418(A305422(n))));

Formula

a(1) = 0, a(2n) = 1 + 2*a(n), a(2n+1) = 2*a(A305422(2n+1)).
a(n) = A054429(A305428(n)).
For all n >= 1:
A000120(a(n)) = A091222(n).
A069010(a(n)) = A091221(n).
A106737(a(n)) = A091220(n).
A132971(a(n)) = A091219(n).
A085357(a(n)) = A304109(n).

A304529 a(1) = 0, a(2n) = n, a(2n+1) = a(A305422(2n+1)).

Original entry on oeis.org

0, 1, 1, 2, 2, 3, 1, 4, 3, 5, 1, 6, 1, 7, 4, 8, 8, 9, 1, 10, 2, 11, 11, 12, 1, 13, 6, 14, 7, 15, 1, 16, 25, 17, 7, 18, 1, 19, 14, 20, 1, 21, 19, 22, 12, 23, 1, 24, 3, 25, 16, 26, 13, 27, 1, 28, 22, 29, 1, 30, 1, 31, 5, 32, 10, 33, 1, 34, 2, 35, 59, 36, 1, 37, 44, 38, 55, 39, 13, 40, 2, 41, 9, 42, 32, 43, 1, 44, 47, 45, 1, 46, 19, 47, 26, 48, 1, 49, 50, 50
Offset: 1

Views

Author

Antti Karttunen, Jun 10 2018

Keywords

Comments

This is GF(2)[X] analog of A246277.
For all i, j: a(i) = a(j) => A278233(i) = A278233(j).
For all i, j: a(i) = a(j) => A305788(i) = A305788(j).

Crossrefs

Cf. A014580 (positions of 1's), A278233, A305788.
Cf. also A246277.

Programs

  • PARI
    A091225(n) = polisirreducible(Pol(binary(n))*Mod(1, 2));
    A305419(n) = if(n<3,1, my(k=n-1); while(k>1 && !A091225(k),k--); (k));
    A305422(n) = { my(f = subst(lift(factor(Pol(binary(n))*Mod(1, 2))),x,2)); for(i=1,#f~,f[i,1] = Pol(binary(A305419(f[i,1])))); fromdigits(Vec(factorback(f))%2,2); };
    A304529(n) = if(1==n,0,while(n%2, n = A305422(n)); n/2);

Formula

a(1) = 0, a(2n) = n, a(2n+1) = a(A305422(2n+1)).

A305425 a(n) = n/2 for even n, a(n) = A305422(n) for odd n.

Original entry on oeis.org

1, 1, 2, 2, 4, 3, 3, 4, 6, 5, 7, 6, 11, 7, 8, 8, 16, 9, 13, 10, 5, 11, 22, 12, 19, 13, 12, 14, 14, 15, 25, 16, 50, 17, 29, 18, 31, 19, 28, 20, 37, 21, 38, 22, 24, 23, 41, 24, 9, 25, 32, 26, 26, 27, 47, 28, 44, 29, 55, 30, 59, 31, 10, 32, 20, 33, 61, 34, 21, 35, 118, 36, 67, 37, 88, 38, 110, 39, 53, 40, 69, 41, 18, 42, 64, 43, 73, 44, 94, 45, 87, 46, 43, 47
Offset: 1

Views

Author

Antti Karttunen, Jun 08 2018

Keywords

Comments

Each k occurs exactly twice, at 2k and at A305421(k).

Crossrefs

Bisections: A000027 and A305422.
Cf. also A252463.

Programs

  • PARI
    A091225(n) = polisirreducible(Pol(binary(n))*Mod(1, 2));
    A305419(n) = if(n<3,1, my(k=n-1); while(k>1 && !A091225(k),k--); (k));
    A305422(n) = { my(f = subst(lift(factor(Pol(binary(n))*Mod(1, 2))),x,2)); for(i=1,#f~,f[i,1] = Pol(binary(A305419(f[i,1])))); fromdigits(Vec(factorback(f))%2,2); };
    A305425(n) = if(n%2,A305422(n),n/2);

Formula

a(n) = n/2 if n is even, a(n) = A305422(n) if n is odd.

A305428 Permutation of nonnegative integers: a(1) = 0, a(2) = 1, a(2n) = 2*a(n), a(2n+1) = 1 + 2*a(A305422(2n+1)).

Original entry on oeis.org

0, 1, 3, 2, 5, 6, 7, 4, 13, 10, 15, 12, 31, 14, 9, 8, 17, 26, 63, 20, 11, 30, 61, 24, 127, 62, 25, 28, 29, 18, 255, 16, 509, 34, 59, 52, 511, 126, 57, 40, 1023, 22, 253, 60, 49, 122, 2047, 48, 27, 254, 33, 124, 125, 50, 4095, 56, 121, 58, 8191, 36, 16383, 510, 21, 32, 41, 1018, 32767, 68, 23, 118, 32765, 104, 65535, 1022, 241, 252, 16381, 114, 251, 80, 47
Offset: 1

Views

Author

Antti Karttunen, Jun 10 2018

Keywords

Comments

Note the indexing: the domain starts from 1, while the range includes also zero.
This is GF(2)[X] analog of A243071.

Crossrefs

Cf. A305427 (inverse).
Cf. A305422.
Cf. also A243071, A305418.

Programs

  • PARI
    A091225(n) = polisirreducible(Pol(binary(n))*Mod(1, 2));
    A305419(n) = if(n<3,1, my(k=n-1); while(k>1 && !A091225(k),k--); (k));
    A305422(n) = { my(f = subst(lift(factor(Pol(binary(n))*Mod(1, 2))),x,2)); for(i=1,#f~,f[i,1] = Pol(binary(A305419(f[i,1])))); fromdigits(Vec(factorback(f))%2,2); };
    A305428(n) = if(n<=2,(n-1),if(!(n%2),2*A305428(n/2),1+(2*(A305428(A305422(n))))));

Formula

a(1) = 0, a(2) = 1, a(2n) = 2*a(n), a(2n+1) = 1 + 2*a(A305422(2n+1)).
a(n) = A054429(A305418(n)).

A305424 Permutation of natural numbers: a(n) = A305422(2*n-1).

Original entry on oeis.org

1, 2, 4, 3, 6, 7, 11, 8, 16, 13, 5, 22, 19, 12, 14, 25, 50, 29, 31, 28, 37, 38, 24, 41, 9, 32, 26, 47, 44, 55, 59, 10, 20, 61, 21, 118, 67, 88, 110, 53, 69, 18, 64, 73, 94, 87, 43, 52, 91, 100, 58, 97, 56, 15, 103, 62, 82, 109, 115, 48, 23, 74, 76, 49, 98, 117, 113, 152, 131, 46, 148, 137, 143, 164, 218, 27, 96, 227, 145, 230, 89, 182, 200
Offset: 1

Views

Author

Antti Karttunen, Jun 08 2018

Keywords

Comments

Odd bisection of A305422 and A305425.

Crossrefs

Cf. A305423 (inverse).
Cf. also A064216.

Programs

  • PARI
    A091225(n) = polisirreducible(Pol(binary(n))*Mod(1, 2));
    A305419(n) = if(n<3,1, my(k=n-1); while(k>1 && !A091225(k),k--); (k));
    A305422(n) = { my(f = subst(lift(factor(Pol(binary(n))*Mod(1, 2))),x,2)); for(i=1,#f~,f[i,1] = Pol(binary(A305419(f[i,1])))); fromdigits(Vec(factorback(f))%2,2); };
    A305424(n) = A305422(n+n-1);

Formula

a(n) = A305422(2*n-1).

A014580 Binary irreducible polynomials (primes in the ring GF(2)[X]), evaluated at X=2.

Original entry on oeis.org

2, 3, 7, 11, 13, 19, 25, 31, 37, 41, 47, 55, 59, 61, 67, 73, 87, 91, 97, 103, 109, 115, 117, 131, 137, 143, 145, 157, 167, 171, 185, 191, 193, 203, 211, 213, 229, 239, 241, 247, 253, 283, 285, 299, 301, 313, 319, 333, 351, 355, 357, 361, 369, 375
Offset: 1

Views

Author

David Petry (petry(AT)accessone.com)

Keywords

Comments

Or, binary irreducible polynomials, interpreted as binary vectors, then written in base 10.
The numbers {a(n)} are a subset of the set {A206074}. - Thomas Ordowski, Feb 21 2014
2^n - 1 is a term if and only if n = 2 or n is a prime and 2 is a primitive root modulo n. - Jianing Song, May 10 2021
For odd k, k is a term if and only if binary_reverse(k) = A145341((k+1)/2) is. - Joerg Arndt and Jianing Song, May 10 2021

Examples

			x^4 + x^3 + 1 -> 16+8+1 = 25. Or, x^4 + x^3 + 1 -> 11001 (binary) = 25 (decimal).
		

Crossrefs

Written in binary: A058943.
Number of degree-n irreducible polynomials: A001037, see also A000031.
Multiplication table: A048720.
Characteristic function: A091225. Inverse: A091227. a(n) = A091202(A000040(n)). Almost complement of A091242. Union of A091206 & A091214 and also of A091250 & A091252. First differences: A091223. Apart from a(1) and a(2), a subsequence of A092246 and hence A000069.
Table of irreducible factors of n: A256170.
Irreducible polynomials satisfying particular conditions: A071642, A132447, A132449, A132453, A162570.
Factorization sentinel: A278239.
Sequences analyzing the difference between factorization into GF(2)[X] irreducibles and ordinary prime factorization of the corresponding integer: A234741, A234742, A235032, A235033, A235034, A235035, A235040, A236850, A325386, A325559, A325560, A325563, A325641, A325642, A325643.
Factorization-preserving isomorphisms: A091203, A091204, A235041, A235042.
See A115871 for sequences related to cross-domain congruences.
Functions based on the irreducibles: A305421, A305422.

Programs

  • Mathematica
    fQ[n_] := Block[{ply = Plus @@ (Reverse@ IntegerDigits[n, 2] x^Range[0, Floor@ Log2@ n])}, ply == Factor[ply, Modulus -> 2] && n != 2^Floor@ Log2@ n]; fQ[2] = True; Select[ Range@ 378, fQ] (* Robert G. Wilson v, Aug 12 2011 *)
    Reap[Do[If[IrreduciblePolynomialQ[IntegerDigits[n, 2] . x^Reverse[Range[0, Floor[Log[2, n]]]], Modulus -> 2], Sow[n]], {n, 2, 1000}]][[2, 1]] (* Jean-François Alcover, Nov 21 2016 *)
  • PARI
    is(n)=polisirreducible(Pol(binary(n))*Mod(1,2)) \\ Charles R Greathouse IV, Mar 22 2013

A091203 Factorization-preserving isomorphism from binary codes of GF(2) polynomials to integers.

Original entry on oeis.org

0, 1, 2, 3, 4, 9, 6, 5, 8, 15, 18, 7, 12, 11, 10, 27, 16, 81, 30, 13, 36, 25, 14, 33, 24, 17, 22, 45, 20, 21, 54, 19, 32, 57, 162, 55, 60, 23, 26, 63, 72, 29, 50, 51, 28, 135, 66, 31, 48, 35, 34, 243, 44, 39, 90, 37, 40, 99, 42, 41, 108, 43, 38, 75, 64, 225, 114, 47, 324
Offset: 0

Views

Author

Antti Karttunen, Jan 03 2004

Keywords

Comments

E.g. we have the following identities: A000040(n) = a(A014580(n)), A091219(n) = A008683(a(n)), A091220(n) = A000005(a(n)), A091221(n) = A001221(a(n)), A091222(n) = A001222(a(n)), A091225(n) = A010051(a(n)), A091227(n) = A049084(a(n)), A091247(n) = A066247(a(n)).

Crossrefs

Programs

  • PARI
    A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ From A003961
    A091225(n) = polisirreducible(Pol(binary(n))*Mod(1, 2));
    A305419(n) = if(n<3,1, my(k=n-1); while(k>1 && !A091225(k),k--); (k));
    A305422(n) = { my(f = subst(lift(factor(Pol(binary(n))*Mod(1, 2))),x,2)); for(i=1,#f~,f[i,1] = Pol(binary(A305419(f[i,1])))); fromdigits(Vec(factorback(f))%2,2); };
    A091203(n) = if(n<=1,n,if(!(n%2),2*A091203(n/2),A003961(A091203(A305422(n))))); \\ Antti Karttunen, Jun 10 2018

Formula

a(0)=0, a(1)=1. For n's coding an irreducible polynomial ir_i, that is if n=A014580(i), we have a(n) = A000040(i) and for composite polynomials a(ir_i X ir_j X ...) = p_i * p_j * ..., where p_i = A000040(i) and X stands for carryless multiplication of GF(2)[X] polynomials (A048720) and * for the ordinary multiplication of integers (A004247).
Other identities. For all n >= 1, the following holds:
A010051(a(n)) = A091225(n). [After a(1)=1, maps binary representations of irreducible GF(2) polynomials, A014580, to primes and the binary representations of corresponding reducible polynomials, A091242, to composite numbers. The permutations A091205, A106443, A106445, A106447, A235042 and A245704 have the same property.]
From Antti Karttunen, Jun 10 2018: (Start)
For n <= 1, a(n) = n, for n > 1, a(n) = 2*a(n/2) if n is even, and if n is odd, then a(n) = A003961(a(A305422(n))).
a(n) = A005940(1+A305418(n)) = A163511(A305428(n)).
A046523(a(n)) = A278233(n).
(End)

A305419 Largest k < n whose binary expansion encodes an irreducible (0,1)-polynomial over GF(2)[X], with a(1) = a(2) = 1.

Original entry on oeis.org

1, 1, 2, 3, 3, 3, 3, 7, 7, 7, 7, 11, 11, 13, 13, 13, 13, 13, 13, 19, 19, 19, 19, 19, 19, 25, 25, 25, 25, 25, 25, 31, 31, 31, 31, 31, 31, 37, 37, 37, 37, 41, 41, 41, 41, 41, 41, 47, 47, 47, 47, 47, 47, 47, 47, 55, 55, 55, 55, 59, 59, 61, 61, 61, 61, 61, 61, 67, 67, 67, 67, 67, 67, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 87
Offset: 1

Views

Author

Antti Karttunen, Jun 07 2018

Keywords

Comments

For n >= 3, a(n) is the largest term of A014580 less than n.

Crossrefs

Programs

  • PARI
    A091225(n) = polisirreducible(Pol(binary(n))*Mod(1, 2));
    A305419(n) = if(n<3,1, my(k=n-1); while(k>1 && !A091225(k),k--); (k));

A305421 GF(2)[X] factorization prime shift towards larger terms.

Original entry on oeis.org

1, 3, 7, 5, 21, 9, 11, 15, 49, 63, 13, 27, 19, 29, 107, 17, 273, 83, 25, 65, 69, 23, 121, 45, 31, 53, 151, 39, 35, 189, 37, 51, 251, 819, 173, 245, 41, 43, 233, 195, 47, 207, 93, 57, 997, 139, 55, 119, 127, 33, 1911, 95, 79, 441, 59, 105, 367, 101, 61, 455, 67, 111, 475, 85, 1281, 269, 73, 1365, 81, 503, 457, 287, 87, 123, 1549, 125, 179, 315
Offset: 1

Views

Author

Antti Karttunen, Jun 07 2018

Keywords

Comments

Permutation of the odd numbers, A005408.
Let a x b stand for the carryless binary multiplication of positive integers a and b, that is, the result of operation A048720(a,b). With n having a unique factorization as A014580(i) x A014580(j) x ... x A014580(k), 1 <= i <= j <= ... <= k, a(n) = A014580(1+i) x A014580(1+j) x ... x A014580(1+k).

Examples

			For n = 12, which by its binary representation '1100' corresponds with (0,1)-polynomial x^3 + x^2, which over GF(2)[X] is factored as (x)(x)(x+1), i.e., 12 = A048720(2,A048720(2,3)) = A048720(A014580(1), A048720(A014580(1),A014580(2))), we then form a(12) as A048720(A014580(2), A048720(A014580(2),A014580(3))) = A048720(3,A048720(3,7)) = 27. Note that x, x+1 and x^2 + x + 1 are the three smallest irreducible (0,1)-polynomials when factored over GF(2)[X], and their binary representations 2, 3 and 7 are the three initial terms of A014580.
		

Crossrefs

Cf. A305422 (a left inverse).
Cf. also A003961, A300841.

Programs

  • PARI
    A091225(n) = polisirreducible(Pol(binary(n))*Mod(1, 2));
    A305420(n) = { my(k=1+n); while(!A091225(k),k++); (k); };
    A305421(n) = { my(f = subst(lift(factor(Pol(binary(n))*Mod(1, 2))),x,2)); for(i=1,#f~,f[i,1] = Pol(binary(A305420(f[i,1])))); fromdigits(Vec(factorback(f))%2,2); };

Formula

For all n >= 1:
A305422(a(n)) = n.
A268389(a(n)) = A007814(n).
a(A000079(n)) = A001317(n).
Showing 1-9 of 9 results.