cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A091203 Factorization-preserving isomorphism from binary codes of GF(2) polynomials to integers.

Original entry on oeis.org

0, 1, 2, 3, 4, 9, 6, 5, 8, 15, 18, 7, 12, 11, 10, 27, 16, 81, 30, 13, 36, 25, 14, 33, 24, 17, 22, 45, 20, 21, 54, 19, 32, 57, 162, 55, 60, 23, 26, 63, 72, 29, 50, 51, 28, 135, 66, 31, 48, 35, 34, 243, 44, 39, 90, 37, 40, 99, 42, 41, 108, 43, 38, 75, 64, 225, 114, 47, 324
Offset: 0

Views

Author

Antti Karttunen, Jan 03 2004

Keywords

Comments

E.g. we have the following identities: A000040(n) = a(A014580(n)), A091219(n) = A008683(a(n)), A091220(n) = A000005(a(n)), A091221(n) = A001221(a(n)), A091222(n) = A001222(a(n)), A091225(n) = A010051(a(n)), A091227(n) = A049084(a(n)), A091247(n) = A066247(a(n)).

Crossrefs

Programs

  • PARI
    A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ From A003961
    A091225(n) = polisirreducible(Pol(binary(n))*Mod(1, 2));
    A305419(n) = if(n<3,1, my(k=n-1); while(k>1 && !A091225(k),k--); (k));
    A305422(n) = { my(f = subst(lift(factor(Pol(binary(n))*Mod(1, 2))),x,2)); for(i=1,#f~,f[i,1] = Pol(binary(A305419(f[i,1])))); fromdigits(Vec(factorback(f))%2,2); };
    A091203(n) = if(n<=1,n,if(!(n%2),2*A091203(n/2),A003961(A091203(A305422(n))))); \\ Antti Karttunen, Jun 10 2018

Formula

a(0)=0, a(1)=1. For n's coding an irreducible polynomial ir_i, that is if n=A014580(i), we have a(n) = A000040(i) and for composite polynomials a(ir_i X ir_j X ...) = p_i * p_j * ..., where p_i = A000040(i) and X stands for carryless multiplication of GF(2)[X] polynomials (A048720) and * for the ordinary multiplication of integers (A004247).
Other identities. For all n >= 1, the following holds:
A010051(a(n)) = A091225(n). [After a(1)=1, maps binary representations of irreducible GF(2) polynomials, A014580, to primes and the binary representations of corresponding reducible polynomials, A091242, to composite numbers. The permutations A091205, A106443, A106445, A106447, A235042 and A245704 have the same property.]
From Antti Karttunen, Jun 10 2018: (Start)
For n <= 1, a(n) = n, for n > 1, a(n) = 2*a(n/2) if n is even, and if n is odd, then a(n) = A003961(a(A305422(n))).
a(n) = A005940(1+A305418(n)) = A163511(A305428(n)).
A046523(a(n)) = A278233(n).
(End)

A305422 GF(2)[X] factorization prime shift towards smaller terms.

Original entry on oeis.org

1, 1, 2, 1, 4, 2, 3, 1, 6, 4, 7, 2, 11, 3, 8, 1, 16, 6, 13, 4, 5, 7, 22, 2, 19, 11, 12, 3, 14, 8, 25, 1, 50, 16, 29, 6, 31, 13, 28, 4, 37, 5, 38, 7, 24, 22, 41, 2, 9, 19, 32, 11, 26, 12, 47, 3, 44, 14, 55, 8, 59, 25, 10, 1, 20, 50, 61, 16, 21, 29, 118, 6, 67, 31, 88, 13, 110, 28, 53, 4, 69, 37, 18, 5, 64, 38, 73, 7, 94, 24, 87, 22, 43, 41, 52, 2, 91
Offset: 1

Views

Author

Antti Karttunen, Jun 07 2018

Keywords

Comments

Let a x b stand for the carryless binary multiplication of positive integers a and b, that is, the result of operation A048720(a,b). With n having a unique factorization as f(i) x f(j) x ... x f(k), with 1 <= i <= j <= ... <= k, a(n) = f(i-1) x f(j-1) x ... x f(k-1), where f(0) = 1, and f(n) = A014580(n) for n >= 1.

Crossrefs

Cf. A000079 (positions of ones), A014580, A091225, A268389, A305419, A305421, A305424 (odd bisection), A305425.
Cf. also A064989, A300840.

Programs

  • PARI
    A091225(n) = polisirreducible(Pol(binary(n))*Mod(1, 2));
    A305419(n) = if(n<3,1, my(k=n-1); while(k>1 && !A091225(k),k--); (k));
    A305422(n) = { my(f = subst(lift(factor(Pol(binary(n))*Mod(1, 2))),x,2)); for(i=1,#f~,f[i,1] = Pol(binary(A305419(f[i,1])))); fromdigits(Vec(factorback(f))%2,2); };

Formula

For all n >= 1:
a(A305421(n)) = n.
a(A001317(n)) = A000079(n).
A007814(a(n)) = A268389(n).

A305420 Smallest k > n whose binary expansion encodes an irreducible (0,1)-polynomial over GF(2)[X].

Original entry on oeis.org

2, 3, 7, 7, 7, 7, 11, 11, 11, 11, 13, 13, 19, 19, 19, 19, 19, 19, 25, 25, 25, 25, 25, 25, 31, 31, 31, 31, 31, 31, 37, 37, 37, 37, 37, 37, 41, 41, 41, 41, 47, 47, 47, 47, 47, 47, 55, 55, 55, 55, 55, 55, 55, 55, 59, 59, 59, 59, 61, 61, 67, 67, 67, 67, 67, 67, 73, 73, 73, 73, 73, 73, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 91
Offset: 1

Views

Author

Antti Karttunen, Jun 07 2018

Keywords

Comments

a(n) is the smallest term of A014580 greater than n.

Crossrefs

Programs

  • PARI
    A091225(n) = polisirreducible(Pol(binary(n))*Mod(1, 2));
    A305420(n) = { my(k=1+n); while(!A091225(k),k++); (k); };

Formula

For n >= 1, a(n) = A091228(1+n).

A305418 Permutation of nonnegative integers: a(1) = 0, a(2n) = 1 + 2*a(n), a(2n+1) = 2*a(A305422(2n+1)).

Original entry on oeis.org

0, 1, 2, 3, 6, 5, 4, 7, 10, 13, 8, 11, 16, 9, 14, 15, 30, 21, 32, 27, 12, 17, 34, 23, 64, 33, 22, 19, 18, 29, 128, 31, 258, 61, 36, 43, 256, 65, 38, 55, 512, 25, 130, 35, 46, 69, 1024, 47, 20, 129, 62, 67, 66, 45, 2048, 39, 70, 37, 4096, 59, 8192, 257, 26, 63, 54, 517, 16384, 123, 24, 73, 16386, 87, 32768, 513, 142, 131, 8194, 77, 132, 111, 48, 1025, 42, 51
Offset: 1

Views

Author

Antti Karttunen, Jun 10 2018

Keywords

Comments

This is GF(2)[X] analog of A156552. Note the indexing: the domain starts from 1, while the range includes also zero.

Crossrefs

Cf. A305417 (inverse).
Cf. A305422.

Programs

  • PARI
    A091225(n) = polisirreducible(Pol(binary(n))*Mod(1, 2));
    A305419(n) = if(n<3,1, my(k=n-1); while(k>1 && !A091225(k),k--); (k));
    A305422(n) = { my(f = subst(lift(factor(Pol(binary(n))*Mod(1, 2))),x,2)); for(i=1,#f~,f[i,1] = Pol(binary(A305419(f[i,1])))); fromdigits(Vec(factorback(f))%2,2); };
    A305418(n) = if(1==n,(n-1),if(!(n%2),1+(2*(A305418(n/2))),2*A305418(A305422(n))));

Formula

a(1) = 0, a(2n) = 1 + 2*a(n), a(2n+1) = 2*a(A305422(2n+1)).
a(n) = A054429(A305428(n)).
For all n >= 1:
A000120(a(n)) = A091222(n).
A069010(a(n)) = A091221(n).
A106737(a(n)) = A091220(n).
A132971(a(n)) = A091219(n).
A085357(a(n)) = A304109(n).

A304529 a(1) = 0, a(2n) = n, a(2n+1) = a(A305422(2n+1)).

Original entry on oeis.org

0, 1, 1, 2, 2, 3, 1, 4, 3, 5, 1, 6, 1, 7, 4, 8, 8, 9, 1, 10, 2, 11, 11, 12, 1, 13, 6, 14, 7, 15, 1, 16, 25, 17, 7, 18, 1, 19, 14, 20, 1, 21, 19, 22, 12, 23, 1, 24, 3, 25, 16, 26, 13, 27, 1, 28, 22, 29, 1, 30, 1, 31, 5, 32, 10, 33, 1, 34, 2, 35, 59, 36, 1, 37, 44, 38, 55, 39, 13, 40, 2, 41, 9, 42, 32, 43, 1, 44, 47, 45, 1, 46, 19, 47, 26, 48, 1, 49, 50, 50
Offset: 1

Views

Author

Antti Karttunen, Jun 10 2018

Keywords

Comments

This is GF(2)[X] analog of A246277.
For all i, j: a(i) = a(j) => A278233(i) = A278233(j).
For all i, j: a(i) = a(j) => A305788(i) = A305788(j).

Crossrefs

Cf. A014580 (positions of 1's), A278233, A305788.
Cf. also A246277.

Programs

  • PARI
    A091225(n) = polisirreducible(Pol(binary(n))*Mod(1, 2));
    A305419(n) = if(n<3,1, my(k=n-1); while(k>1 && !A091225(k),k--); (k));
    A305422(n) = { my(f = subst(lift(factor(Pol(binary(n))*Mod(1, 2))),x,2)); for(i=1,#f~,f[i,1] = Pol(binary(A305419(f[i,1])))); fromdigits(Vec(factorback(f))%2,2); };
    A304529(n) = if(1==n,0,while(n%2, n = A305422(n)); n/2);

Formula

a(1) = 0, a(2n) = n, a(2n+1) = a(A305422(2n+1)).

A305425 a(n) = n/2 for even n, a(n) = A305422(n) for odd n.

Original entry on oeis.org

1, 1, 2, 2, 4, 3, 3, 4, 6, 5, 7, 6, 11, 7, 8, 8, 16, 9, 13, 10, 5, 11, 22, 12, 19, 13, 12, 14, 14, 15, 25, 16, 50, 17, 29, 18, 31, 19, 28, 20, 37, 21, 38, 22, 24, 23, 41, 24, 9, 25, 32, 26, 26, 27, 47, 28, 44, 29, 55, 30, 59, 31, 10, 32, 20, 33, 61, 34, 21, 35, 118, 36, 67, 37, 88, 38, 110, 39, 53, 40, 69, 41, 18, 42, 64, 43, 73, 44, 94, 45, 87, 46, 43, 47
Offset: 1

Views

Author

Antti Karttunen, Jun 08 2018

Keywords

Comments

Each k occurs exactly twice, at 2k and at A305421(k).

Crossrefs

Bisections: A000027 and A305422.
Cf. also A252463.

Programs

  • PARI
    A091225(n) = polisirreducible(Pol(binary(n))*Mod(1, 2));
    A305419(n) = if(n<3,1, my(k=n-1); while(k>1 && !A091225(k),k--); (k));
    A305422(n) = { my(f = subst(lift(factor(Pol(binary(n))*Mod(1, 2))),x,2)); for(i=1,#f~,f[i,1] = Pol(binary(A305419(f[i,1])))); fromdigits(Vec(factorback(f))%2,2); };
    A305425(n) = if(n%2,A305422(n),n/2);

Formula

a(n) = n/2 if n is even, a(n) = A305422(n) if n is odd.

A305428 Permutation of nonnegative integers: a(1) = 0, a(2) = 1, a(2n) = 2*a(n), a(2n+1) = 1 + 2*a(A305422(2n+1)).

Original entry on oeis.org

0, 1, 3, 2, 5, 6, 7, 4, 13, 10, 15, 12, 31, 14, 9, 8, 17, 26, 63, 20, 11, 30, 61, 24, 127, 62, 25, 28, 29, 18, 255, 16, 509, 34, 59, 52, 511, 126, 57, 40, 1023, 22, 253, 60, 49, 122, 2047, 48, 27, 254, 33, 124, 125, 50, 4095, 56, 121, 58, 8191, 36, 16383, 510, 21, 32, 41, 1018, 32767, 68, 23, 118, 32765, 104, 65535, 1022, 241, 252, 16381, 114, 251, 80, 47
Offset: 1

Views

Author

Antti Karttunen, Jun 10 2018

Keywords

Comments

Note the indexing: the domain starts from 1, while the range includes also zero.
This is GF(2)[X] analog of A243071.

Crossrefs

Cf. A305427 (inverse).
Cf. A305422.
Cf. also A243071, A305418.

Programs

  • PARI
    A091225(n) = polisirreducible(Pol(binary(n))*Mod(1, 2));
    A305419(n) = if(n<3,1, my(k=n-1); while(k>1 && !A091225(k),k--); (k));
    A305422(n) = { my(f = subst(lift(factor(Pol(binary(n))*Mod(1, 2))),x,2)); for(i=1,#f~,f[i,1] = Pol(binary(A305419(f[i,1])))); fromdigits(Vec(factorback(f))%2,2); };
    A305428(n) = if(n<=2,(n-1),if(!(n%2),2*A305428(n/2),1+(2*(A305428(A305422(n))))));

Formula

a(1) = 0, a(2) = 1, a(2n) = 2*a(n), a(2n+1) = 1 + 2*a(A305422(2n+1)).
a(n) = A054429(A305418(n)).

A305429 Largest k < n whose binary expansion encodes an irreducible (0,1)-polynomial over Q, with a(1) = a(2) = 1.

Original entry on oeis.org

1, 1, 2, 3, 3, 5, 5, 7, 7, 7, 7, 11, 11, 13, 13, 13, 13, 17, 17, 19, 19, 19, 19, 23, 23, 25, 25, 25, 25, 29, 29, 31, 31, 31, 31, 31, 31, 37, 37, 37, 37, 41, 41, 43, 43, 43, 43, 47, 47, 47, 47, 47, 47, 53, 53, 55, 55, 55, 55, 59, 59, 61, 61, 61, 61, 61, 61, 67, 67, 69, 69, 71, 71, 73, 73, 73, 73, 77, 77, 79, 79, 81, 81, 83, 83, 83, 83, 87, 87
Offset: 1

Views

Author

Antti Karttunen, Jun 07 2018

Keywords

Comments

For n >= 3, a(n) is the largest term of A206074 less than n.

Crossrefs

Programs

  • PARI
    A257000(n) = polisirreducible(Pol(binary(n)));
    A305429(n) = if(n<3,1, my(k=n-1); while(k>1 && !A257000(k),k--); (k));

A305424 Permutation of natural numbers: a(n) = A305422(2*n-1).

Original entry on oeis.org

1, 2, 4, 3, 6, 7, 11, 8, 16, 13, 5, 22, 19, 12, 14, 25, 50, 29, 31, 28, 37, 38, 24, 41, 9, 32, 26, 47, 44, 55, 59, 10, 20, 61, 21, 118, 67, 88, 110, 53, 69, 18, 64, 73, 94, 87, 43, 52, 91, 100, 58, 97, 56, 15, 103, 62, 82, 109, 115, 48, 23, 74, 76, 49, 98, 117, 113, 152, 131, 46, 148, 137, 143, 164, 218, 27, 96, 227, 145, 230, 89, 182, 200
Offset: 1

Views

Author

Antti Karttunen, Jun 08 2018

Keywords

Comments

Odd bisection of A305422 and A305425.

Crossrefs

Cf. A305423 (inverse).
Cf. also A064216.

Programs

  • PARI
    A091225(n) = polisirreducible(Pol(binary(n))*Mod(1, 2));
    A305419(n) = if(n<3,1, my(k=n-1); while(k>1 && !A091225(k),k--); (k));
    A305422(n) = { my(f = subst(lift(factor(Pol(binary(n))*Mod(1, 2))),x,2)); for(i=1,#f~,f[i,1] = Pol(binary(A305419(f[i,1])))); fromdigits(Vec(factorback(f))%2,2); };
    A305424(n) = A305422(n+n-1);

Formula

a(n) = A305422(2*n-1).
Showing 1-9 of 9 results.