cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A305793 Restricted growth sequence transform of A305792, a filter sequence constructed from binary expansions of the proper divisors of n.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 5, 6, 7, 2, 8, 2, 9, 10, 11, 2, 12, 2, 13, 14, 15, 2, 16, 17, 15, 10, 18, 2, 19, 2, 20, 21, 7, 22, 23, 2, 15, 21, 24, 2, 25, 2, 26, 27, 28, 2, 29, 30, 31, 10, 26, 2, 32, 33, 34, 21, 28, 2, 35, 2, 36, 37, 38, 33, 39, 2, 13, 40, 41, 2, 42, 2, 43, 44, 26, 45, 46, 2, 47, 48, 43, 2, 49, 50, 51, 40, 52, 2, 53, 45, 54, 55, 56, 33, 57, 2, 58, 59
Offset: 1

Views

Author

Antti Karttunen, Jun 11 2018

Keywords

Crossrefs

Programs

  • PARI
    \\ Needs also code from A286622:
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A305792(n) = { my(m=1); fordiv(n,d,if(dA286622(d)-1))); (m); };
    v305793 = rgs_transform(vector(up_to, n, A305792(n)));
    A305793(n) = v305793[n];

Formula

For all i, j:
a(i) = a(j) => A000005(i) = A000005(j).
a(i) = a(j) => A292257(i) = A292257(j).
a(i) = a(j) => A305426(i) = A305426(j).
a(i) = a(j) => A305435(i) = A305435(j).

A305436 Number of divisors of n of the form 2^k + 1 for k >= 0.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 0, 1, 2, 2, 0, 2, 0, 1, 2, 1, 1, 3, 0, 2, 1, 1, 0, 2, 1, 1, 2, 1, 0, 3, 0, 1, 2, 2, 1, 3, 0, 1, 1, 2, 0, 2, 0, 1, 3, 1, 0, 2, 0, 2, 2, 1, 0, 3, 1, 1, 1, 1, 0, 3, 0, 1, 2, 1, 2, 3, 0, 2, 1, 2, 0, 3, 0, 1, 2, 1, 0, 2, 0, 2, 2, 1, 0, 2, 2, 1, 1, 1, 0, 4, 0, 1, 1, 1, 1, 2, 0, 1, 3, 2, 0, 3, 0, 1, 2
Offset: 1

Views

Author

Antti Karttunen, Jun 11 2018

Keywords

Comments

a(n) is the number of terms of A000051 that divide n.

Crossrefs

Cf. A000051, A209229, A292315 (positions of zeros), A305435, A323482.
Cf. also A154402.

Programs

Formula

a(n) = Sum_{d|n} A209229(d-1).
a(n) = A305435(n) + A209229(n-1).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = A323482 = 1.264499... . - Amiram Eldar, Dec 31 2023

A305426 Number of proper divisors of n of the form 2^k - 1 for k >= 1.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 2, 1, 1, 3, 1, 1, 2, 1, 1, 2, 2, 1, 3, 1, 1, 2, 1, 2, 2, 1, 1, 2, 1, 1, 3, 1, 1, 3, 1, 1, 2, 2, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 3, 1, 2, 3, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 1, 3, 1, 2, 2, 1, 1, 2, 1, 1, 3, 1, 1, 2, 1, 1, 3, 2, 1, 3, 1, 1, 2, 1, 2, 2, 1, 1, 2, 1, 1, 4
Offset: 1

Views

Author

Antti Karttunen, Jun 11 2018

Keywords

Comments

a(n) is the number of terms of A000225 less than n that divide n.

Crossrefs

Cf. also A305435.

Programs

  • Mathematica
    Table[DivisorSum[n, 1 &, And[IntegerQ@ Log2[# + 1], # < n] &], {n, 105}] (* Michael De Vlieger, Jun 11 2018 *)
  • PARI
    A209229(n) = (n && !bitand(n,n-1));
    A036987(n) = A209229(1+n);
    A305426(n) = sumdiv(n,d,(dA036987(d));

Formula

a(n) = Sum_{d|n, dA036987(d).
a(n) = A154402(n) - A036987(n).
Showing 1-3 of 3 results.