cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A154402 Inverse Moebius transform of Fredholm-Rueppel sequence, cf. A036987.

Original entry on oeis.org

1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 1, 2, 1, 2, 3, 1, 1, 2, 1, 1, 3, 1, 1, 2, 1, 1, 2, 2, 1, 3, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 1, 3, 1, 1, 3, 1, 1, 2, 2, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 3, 1, 2, 4, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 1, 3, 1, 2, 2, 1, 1, 2, 1, 1, 3, 1, 1, 2, 1, 1, 3, 2, 1, 3, 1, 1, 2, 1, 2, 2, 1, 1, 2, 1, 1, 4
Offset: 1

Views

Author

Vladeta Jovovic, Jan 08 2009

Keywords

Comments

Number of ways to write n as a sum a_1 + ... + a_k where the a_i are positive integers and a_i = 2 * a_{i-1}, cf. A000929.
Number of divisors of n of the form 2^k - 1 (A000225) for k >= 1. - Jeffrey Shallit, Jan 23 2017

Crossrefs

Cf. also A305436.

Programs

  • Maple
    N:= 200: # to get a(1)..a(N)
    A:= Vector(N):
    for k from 1 do
       t:= 2^k-1;
       if t > N then break fi;
       R:= [seq(i,i=t..N,t)];
       A[R]:= map(`+`,A[R],1)
    od:
    convert(A,list); # Robert Israel, Jan 23 2017
  • Mathematica
    Table[DivisorSum[n, 1 &, IntegerQ@ Log2[# + 1] &], {n, 105}] (* Michael De Vlieger, Jun 11 2018 *)
  • PARI
    A209229(n) = (n && !bitand(n,n-1));
    A036987(n) = A209229(1+n);
    A154402(n) = sumdiv(n,d,A036987(d)); \\ Antti Karttunen, Jun 11 2018
    
  • PARI
    A154402(n) = { my(m=1,s=0); while(m<=n, s += !(n%m); m += (m+1)); (s); }; \\ Antti Karttunen, May 12 2022

Formula

G.f.: Sum_{k>0} x^(2^k-1)/(1-x^(2^k-1)).
From Antti Karttunen, Jun 11 2018: (Start)
a(n) = Sum_{d|n} A036987(d).
a(n) = A305426(n) + A036987(n). (End)
a(n) = A147645(n) + A353786(n). - Antti Karttunen, May 12 2022
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = A065442 = 1.606695... . - Amiram Eldar, Dec 31 2023

A305793 Restricted growth sequence transform of A305792, a filter sequence constructed from binary expansions of the proper divisors of n.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 5, 6, 7, 2, 8, 2, 9, 10, 11, 2, 12, 2, 13, 14, 15, 2, 16, 17, 15, 10, 18, 2, 19, 2, 20, 21, 7, 22, 23, 2, 15, 21, 24, 2, 25, 2, 26, 27, 28, 2, 29, 30, 31, 10, 26, 2, 32, 33, 34, 21, 28, 2, 35, 2, 36, 37, 38, 33, 39, 2, 13, 40, 41, 2, 42, 2, 43, 44, 26, 45, 46, 2, 47, 48, 43, 2, 49, 50, 51, 40, 52, 2, 53, 45, 54, 55, 56, 33, 57, 2, 58, 59
Offset: 1

Views

Author

Antti Karttunen, Jun 11 2018

Keywords

Crossrefs

Programs

  • PARI
    \\ Needs also code from A286622:
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A305792(n) = { my(m=1); fordiv(n,d,if(dA286622(d)-1))); (m); };
    v305793 = rgs_transform(vector(up_to, n, A305792(n)));
    A305793(n) = v305793[n];

Formula

For all i, j:
a(i) = a(j) => A000005(i) = A000005(j).
a(i) = a(j) => A292257(i) = A292257(j).
a(i) = a(j) => A305426(i) = A305426(j).
a(i) = a(j) => A305435(i) = A305435(j).

A305435 Number of proper divisors of n of the form 2^k + 1 for k >= 0.

Original entry on oeis.org

0, 0, 0, 1, 0, 2, 0, 1, 1, 2, 0, 2, 0, 1, 2, 1, 0, 3, 0, 2, 1, 1, 0, 2, 1, 1, 2, 1, 0, 3, 0, 1, 1, 2, 1, 3, 0, 1, 1, 2, 0, 2, 0, 1, 3, 1, 0, 2, 0, 2, 2, 1, 0, 3, 1, 1, 1, 1, 0, 3, 0, 1, 2, 1, 1, 3, 0, 2, 1, 2, 0, 3, 0, 1, 2, 1, 0, 2, 0, 2, 2, 1, 0, 2, 2, 1, 1, 1, 0, 4, 0, 1, 1, 1, 1, 2, 0, 1, 3, 2, 0, 3, 0, 1, 2
Offset: 1

Views

Author

Antti Karttunen, Jun 11 2018

Keywords

Comments

a(n) is the number of terms of A000051 less than n that divide n.

Crossrefs

Cf. also A305426.

Programs

  • Mathematica
    Table[DivisorSum[n, 1 &, And[IntegerQ@ Log2[# - 1], # < n] &], {n, 105}] (* Michael De Vlieger, Jun 11 2018 *)
  • PARI
    A209229(n) = (n && !bitand(n,n-1));
    A305435(n) = sumdiv(n,d,(dA209229(d-1));

Formula

a(n) = Sum_{d|n, dA209229(d-1).
a(n) = A305436(n) - A209229(n-1).
Showing 1-3 of 3 results.