A305542 Number of chiral pairs of color loops of length n with exactly 3 different colors.
0, 0, 1, 3, 12, 35, 111, 318, 934, 2634, 7503, 21071, 59472, 167229, 472133, 1333263, 3777600, 10721837, 30516447, 87035631, 248820816, 712751271, 2045784183, 5882388956, 16942974060, 48876617790, 141204945463, 408495109005, 1183247473872, 3431451145390, 9962348798055, 28953196894668
Offset: 1
Examples
For a(4)=3, the chiral pairs of color loops are AABC-AACB, ABBC-ACBB, and ABCC-ACCB.
Crossrefs
Third column of A305541.
Programs
-
Mathematica
k=3; Table[(k!/(2n)) DivisorSum[n, EulerPhi[#] StirlingS2[n/#, k] &] - (k!/4) (StirlingS2[Floor[(n+1)/2], k] + StirlingS2[Ceiling[(n+1)/2], k]), {n, 1, 40}]
-
PARI
a(n) = my(k=3); -(k!/4)*(stirling(floor((n+1)/2),k,2) + stirling(ceil((n+1)/2),k,2)) + (k!/(2*n))*sumdiv(n, d, eulerphi(d)*stirling(n/d,k,2)); \\ Michel Marcus, Jun 06 2018
Formula
a(n) = -(k!/4)*(S2(floor((n+1)/2),k) + S2(ceiling((n+1)/2),k)) + (k!/(2n))*Sum_{d|n} phi(d)*S2(n/d,k), with k=3 different colors used and where S2(n,k) is the Stirling subset number A008277.
a(n) = A305541(n,3).
G.f.: -(3/2) * x^4 * (1+x)^2 / Product_{j=1..3} (1-j*x^2) - Sum_{d>0} (phi(d)/(2d)) * (log(1-3x^d) - 3*log(1-2x^d) + 3*log(1-x^d)).