A305552 Number of uniform normal multiset partitions of weight n.
1, 1, 3, 5, 12, 17, 47, 65, 170, 277, 655, 1025, 2739, 4097, 10281, 17257, 41364, 65537, 170047, 262145, 660296, 1094457, 2621965, 4194305, 10898799, 16792721, 41945103, 69938141, 168546184, 268435457, 694029255, 1073741825, 2696094037, 4474449261, 10737451027
Offset: 0
Keywords
Examples
The a(4) = 12 uniform normal multiset partitions: {1111}, {1222}, {1122}, {1112}, {1233}, {1223}, {1123}, {1234}, {11,11}, {11,12}, {12,12}, {1,1,1,1}.
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1000
Programs
-
Mathematica
Table[Sum[Binomial[2^(n/k-1)+k-1,k],{k,Divisors[n]}],{n,35}]
-
PARI
a(n)={if(n<1, n==0, sumdiv(n, d, binomial(2^(n/d - 1) + d - 1, d)))} \\ Andrew Howroyd, Jun 22 2018
Formula
a(n) = Sum_{d|n} binomial(2^(n/d - 1) + d - 1, d).
Comments