cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A305651 Expansion of Product_{k>=1} (1 + x^k)^(q(k)-1), where q(k) = number of partitions of k into distinct parts (A000009).

Original entry on oeis.org

1, 0, 0, 1, 1, 2, 3, 5, 7, 12, 17, 26, 39, 59, 87, 132, 192, 284, 419, 612, 892, 1303, 1887, 2730, 3945, 5677, 8154, 11689, 16711, 23839, 33960, 48244, 68432, 96888, 136922, 193148, 272058, 382508, 537007, 752735, 1053550, 1472406, 2054988, 2863993, 3986245, 5541008
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 07 2018

Keywords

Comments

Weigh transform of A111133.
Convolution of the sequences A050342 and A081362.

Crossrefs

Programs

  • Maple
    g:= proc(n) option remember; `if`(n=0, 1, add(g(n-j)*add(
          `if`(d::odd, d, 0), d=numtheory[divisors](j)), j=1..n)/n)
        end:
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(binomial(g(i)-1, j)*b(n-i*j, i-1), j=0..n/i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..60);  # Alois P. Heinz, Jun 07 2018
  • Mathematica
    nmax = 45; CoefficientList[Series[Product[(1 + x^k)^(PartitionsQ[k] - 1), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 45; CoefficientList[Series[Exp[Sum[(-1)^(k + 1)/k (1/ QPochhammer[x^k, x^(2 k)] - 1/(1 - x^k)), {k, 1, nmax}]], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[(-1)^(k/d + 1) d (PartitionsQ[d] - 1), {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 45}]

Formula

G.f.: Product_{k>=1} (1 + x^k)^A111133(k).
G.f.: Product_{k>=1} (1 + x^k)^(A000009(k)-1).