A305651 Expansion of Product_{k>=1} (1 + x^k)^(q(k)-1), where q(k) = number of partitions of k into distinct parts (A000009).
1, 0, 0, 1, 1, 2, 3, 5, 7, 12, 17, 26, 39, 59, 87, 132, 192, 284, 419, 612, 892, 1303, 1887, 2730, 3945, 5677, 8154, 11689, 16711, 23839, 33960, 48244, 68432, 96888, 136922, 193148, 272058, 382508, 537007, 752735, 1053550, 1472406, 2054988, 2863993, 3986245, 5541008
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- N. J. A. Sloane, Transforms
Programs
-
Maple
g:= proc(n) option remember; `if`(n=0, 1, add(g(n-j)*add( `if`(d::odd, d, 0), d=numtheory[divisors](j)), j=1..n)/n) end: b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(binomial(g(i)-1, j)*b(n-i*j, i-1), j=0..n/i))) end: a:= n-> b(n$2): seq(a(n), n=0..60); # Alois P. Heinz, Jun 07 2018
-
Mathematica
nmax = 45; CoefficientList[Series[Product[(1 + x^k)^(PartitionsQ[k] - 1), {k, 1, nmax}], {x, 0, nmax}], x] nmax = 45; CoefficientList[Series[Exp[Sum[(-1)^(k + 1)/k (1/ QPochhammer[x^k, x^(2 k)] - 1/(1 - x^k)), {k, 1, nmax}]], {x, 0, nmax}], x] a[n_] := a[n] = If[n == 0, 1, Sum[Sum[(-1)^(k/d + 1) d (PartitionsQ[d] - 1), {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 45}]
Comments