cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A305757 Inverse Euler transform of q*(j-720) where j is j-function (A000521).

Original entry on oeis.org

24, 196584, 16773144, -18919981056, -3292295086056, 2312547886368744, 640457437563740184, -302667453389051314176, -123005476312830648176616, 39529719620247267255853032, 23306082528463942764630528024, -4849033309391159571741461446656
Offset: 1

Views

Author

Seiichi Manyama, Jun 10 2018

Keywords

Comments

(Conjecture) Let {b_n} = inverse Euler transform of (q*(j+144*k)). b_n is a multiple of 24.

Examples

			(1-x)^(-24) * (1-x^2)^(-196584) * (1-x^3)^(-16773144) * (1-x^4)^18919981056 * ... = 1 + 24*x + 196884*x^2 + 21493760*x^3 + 864299970*x^4 + ... .
		

Crossrefs

Inverse Euler transform of q*(j+144*k): (-1)*A192731 (k=0), this sequence (k=-5), (-1)*A289061 (k=-12).
Cf. A000521, A007240 (j-720), A302407, A305756.

Formula

q*(j-720) = Product_{k>0} (1 - x^k)^(-a(k)).