cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A305798 Dirichlet convolution of A078898 with itself.

Original entry on oeis.org

1, 2, 2, 5, 2, 8, 2, 12, 5, 12, 2, 22, 2, 16, 8, 28, 2, 28, 2, 34, 10, 24, 2, 56, 5, 28, 14, 46, 2, 52, 2, 64, 14, 36, 8, 83, 2, 40, 16, 88, 2, 70, 2, 70, 26, 48, 2, 136, 5, 64, 20, 82, 2, 94, 10, 120, 22, 60, 2, 164, 2, 64, 34, 144, 12, 106, 2, 106, 26, 100, 2, 220, 2, 76, 36, 118, 8, 124, 2, 216, 42, 84, 2, 224, 14, 88, 32, 184, 2, 192, 10
Offset: 1

Views

Author

Antti Karttunen, Jun 13 2018

Keywords

Crossrefs

Programs

  • PARI
    up_to = 65537;
    ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om,invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om,invec[i],(1+pt))); outvec; };
    A020639(n) = if(n>1, if(n>n=factor(n, 0)[1, 1], n, factor(n)[1, 1]), 1); \\ From A020639
    v078898 = ordinal_transform(vector(up_to,n,A020639(n)));
    A078898(n) = v078898[n];
    A305798(n) = sumdiv(n,d,A078898(d)*A078898(n/d));

Formula

a(n) = Sum_{d|n} A078898(d)*A078898(n/d).

A317830 Numerators of rational valued sequence whose Dirichlet convolution with itself yields A175851, the ordinal transform of the nextprime function, A151800.

Original entry on oeis.org

1, 1, 1, 7, 1, 3, 1, 9, 11, 7, 1, 3, 1, 3, 5, 171, 1, -1, 1, -5, 5, 7, 1, -1, 11, 7, 29, 35, 1, -7, 1, -41, 5, 7, 9, 93, 1, 3, 5, 11, 1, -3, 1, -5, 3, 7, 1, -61, 11, 7, 9, 27, 1, -29, 5, -1, 9, 11, 1, -29, 1, 3, 3, 771, 9, 9, 1, -5, 5, -3, 1, -73, 1, 3, 3, 19, 9, 9, 1, -141, -45, 7, 1, -53, 5, 7, 9, 43, 1, -63, 5, 11, 9, 11, 13, 1597, 1
Offset: 1

Views

Author

Antti Karttunen, Aug 12 2018

Keywords

Crossrefs

Cf. A151800, A175851, A046644 (denominators).

Programs

  • Mathematica
    A175851[n_] := If[!CompositeQ[n], 1, n - NextPrime[n, -1] + 1];
    f[n_] := f[n] = If[n == 1, 1, (1/2)(A175851[n] - Sum[If[1 < d < n, f[d]* f[n/d], 0], {d, Divisors[n]}])];
    a[n_] := Numerator[f[n]];
    Array[a, 100] (* Jean-François Alcover, Dec 19 2021 *)
  • PARI
    A175851(n) = if(1==n,n,1 + n - precprime(n));
    A317830aux(n) = if(1==n,n,(A175851(n)-sumdiv(n,d,if((d>1)&&(dA317830aux(d)*A317830aux(n/d),0)))/2);
    A317830(n) = numerator(A317830aux(n));
    
  • PARI
    \\ Memoized implementation:
    memo317830 = Map();
    A317830aux(n) = if(1==n,n,if(mapisdefined(memo317830,n),mapget(memo317830,n),my(v = (A175851(n)-sumdiv(n,d,if((d>1)&&(dA317830aux(d)*A317830aux(n/d),0)))/2); mapput(memo317830,n,v); (v)));

Formula

a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * (A175851(n) - Sum_{d|n, d>1, d 1.

A305796 Dirichlet convolution of A246277 with itself.

Original entry on oeis.org

0, 0, 0, 1, 0, 2, 0, 4, 1, 2, 0, 10, 0, 2, 2, 12, 0, 10, 0, 14, 2, 2, 0, 32, 1, 2, 4, 18, 0, 22, 0, 32, 2, 2, 2, 47, 0, 2, 2, 48, 0, 30, 0, 26, 10, 2, 0, 88, 1, 14, 2, 30, 0, 38, 2, 64, 2, 2, 0, 104, 0, 2, 14, 80, 2, 42, 0, 38, 2, 30, 0, 148, 0, 2, 10, 42, 2, 54, 0, 136, 12, 2, 0, 144, 2, 2, 2, 96, 0, 98, 2, 50, 2, 2, 2, 224, 0, 18, 18, 103, 0, 66, 0, 112, 22
Offset: 1

Views

Author

Antti Karttunen, Jun 13 2018

Keywords

Crossrefs

Programs

  • PARI
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A246277(n) = { if(1==n, 0, while((n%2), n = A064989(n)); (n/2)); };
    A305796(n) = sumdiv(n,d,A246277(d)*A246277(n/d));

Formula

a(n) = Sum_{d|n} A246277(d)*A246277(n/d).

A305805 Dirichlet inverse of A175851.

Original entry on oeis.org

1, -1, -1, -1, -1, 0, -1, 1, -2, -2, -1, 3, -1, 0, -1, -1, -1, 5, -1, 7, -1, -2, -1, 0, -2, -2, 0, -1, -1, 10, -1, 3, -1, -2, -3, -3, -1, 0, -1, 0, -1, 6, -1, 7, 6, -2, -1, -1, -2, 7, -3, 3, -1, 4, -1, 6, -3, -4, -1, -7, -1, 0, 6, -1, -3, 6, -1, 7, -1, 12, -1, -4, -1, 0, 6, 1, -3, 6, -1, -5, 8, -2, -1, 5, -1, -2, -3, -2, -1, 0, -1, 5
Offset: 1

Views

Author

Antti Karttunen, Jun 13 2018

Keywords

Crossrefs

Programs

  • Mathematica
    b[n_] := If[n < 3, 1, n - NextPrime[n + 1, -1] + 1];
    a[n_] := a[n] = If[n == 1, 1, -Sum[b[n/d] a[d], {d, Most@Divisors[n]}]];
    Array[a, 100] (* Jean-François Alcover, Feb 17 2020 *)
  • PARI
    A175851(n) = if(1==n,n,1 + n - precprime(n));
    A305805(n) = if(1==n,1,-sumdiv(n,d,if(dA175851(n/d)*A305805(d),0)));

Formula

a(1) = 1; for n > 1, a(n) = -Sum_{d|n, dA175851(n/d)*a(d).

A305806 Möbius transform of A175851.

Original entry on oeis.org

1, 0, 0, 1, 0, 1, 0, 0, 2, 3, 0, -1, 0, 1, 2, 2, 0, -2, 0, -3, 2, 3, 0, 0, 2, 3, 2, 3, 0, -5, 0, -2, 2, 3, 4, 4, 0, 1, 2, 2, 0, -3, 0, -3, -2, 3, 0, -2, 2, -2, 4, 1, 0, -2, 2, -2, 4, 5, 0, 3, 0, 1, -2, 2, 4, -1, 0, -3, 2, -5, 0, -4, 0, 1, -2, 1, 4, -1, 0, -4, -2, 3, 0, -3, 2, 3, 4, 4, 0, 2, 2, -1, 4, 5, 6, 8, 0, -2, -2, 2, 0, -7, 0, -4, -6
Offset: 1

Views

Author

Antti Karttunen, Jun 13 2018

Keywords

Crossrefs

Programs

Formula

a(n) = Sum_{d|n} A008683(n/d)*A175851(d).
Showing 1-5 of 5 results.