cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A305795 Restricted growth sequence transform of A305794, a filter sequence constructed from the binary expansions of the divisors of n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 11, 13, 14, 15, 5, 16, 11, 17, 18, 19, 20, 21, 22, 19, 23, 24, 20, 25, 26, 27, 28, 10, 29, 30, 31, 19, 32, 33, 31, 34, 35, 36, 37, 38, 39, 40, 41, 42, 23, 36, 35, 43, 44, 45, 32, 38, 46, 47, 39, 48, 49, 50, 51, 52, 11, 17, 53, 54, 20, 55, 31, 56, 57, 36, 58, 59, 39, 60, 61, 56, 35, 62, 63, 64, 65, 66, 35, 67
Offset: 1

Views

Author

Antti Karttunen, Jun 11 2018

Keywords

Crossrefs

Programs

  • PARI
    \\ Needs also code from A286622:
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A305794(n) = { my(m=1); fordiv(n, d, if(d>1, m *= prime(A286622(d)-1))); (m); };
    v305795 = rgs_transform(vector(up_to, n, A305794(n)));
    A305795(n) = v305795[n];

Formula

For all i, j:
a(i) = a(j) => A000005(i) = A000005(j).
a(i) = a(j) => A007814(i) = A007814(j).
a(i) = a(j) => A093653(i) = A093653(j).
a(i) = a(j) => A154402(i) = A154402(j).
a(i) = a(j) => A305436(i) = A305436(j).

A305792 a(n) = Product_{d|n, dA286622(d)-1).

Original entry on oeis.org

1, 2, 2, 4, 2, 12, 2, 8, 6, 20, 2, 72, 2, 28, 30, 16, 2, 180, 2, 200, 42, 44, 2, 432, 10, 44, 30, 392, 2, 11700, 2, 32, 66, 20, 70, 5400, 2, 44, 66, 2000, 2, 29988, 2, 968, 1950, 76, 2, 2592, 14, 1100, 30, 968, 2, 20700, 110, 5488, 66, 76, 2, 4563000, 2, 116, 3570, 64, 110, 21780, 2, 200, 114, 53900, 2, 162000, 2, 68, 4290, 968, 154, 82764, 2, 20000
Offset: 1

Views

Author

Antti Karttunen, Jun 11 2018

Keywords

Crossrefs

Cf. A008578, A278222, A286622, A305793 (rgs-transform), A305794.
Cf. also A293214, A304102.

Programs

  • PARI
    A305792(n) = { my(m=1); fordiv(n,d,if(dA286622(d)-1))); (m); }; \\ Needs also code from A286622.

Formula

a(n) = Product_{d|n, dA008578(A286622(d)).
For all k >= 0, a(2^k) = 2^k.

A317944 a(n) = Product_{d|n, d>1} prime(A286378(d)-1).

Original entry on oeis.org

1, 2, 3, 4, 5, 18, 7, 8, 33, 50, 13, 108, 17, 98, 285, 16, 23, 2178, 29, 500, 651, 338, 37, 648, 185, 578, 1353, 1372, 43, 162450, 47, 32, 2067, 1058, 2065, 143748, 61, 1682, 3417, 5000, 71, 847602, 73, 8788, 247665, 2738, 83, 3888, 581, 68450, 6141, 19652, 97, 3661218, 6565, 19208, 8961, 3698, 107, 92596500, 109, 4418, 809193, 64
Offset: 1

Views

Author

Antti Karttunen, Aug 12 2018

Keywords

Crossrefs

Cf. A286378, A317942, A317945 (restricted growth sequence transform).
Cf. also A305794.

Programs

  • PARI
    \\ Needs also code from A286378:
    A317944(n) = { my(m=1); fordiv(n,d, if(d>1, m *= prime(A286378(d)-1))); (m); };

Formula

a(n) = Product_{d|n, d>1} A008578(A286378(d)).
For all k >= 0, a(2^k) = 2^k.
Showing 1-3 of 3 results.