A305850 Weigh transform of the Bell numbers (A000110).
1, 1, 2, 7, 21, 78, 305, 1304, 6007, 29854, 159012, 904986, 5479078, 35150263, 238033523, 1695554145, 12663533586, 98881246850, 805128085616, 6820302066048, 59983405937707, 546690232627480, 5154757226832625, 50208266917662433, 504482106565647708
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..576
Programs
-
Maple
g:= proc(n) option remember; `if`(n=0, 1, add(binomial(n-1, j-1)*g(n-j), j=1..n)) end: b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(binomial(g(i), j)*b(n-i*j, i-1), j=0..n/i))) end: a:= n-> b(n$2): seq(a(n), n=0..30);
-
Mathematica
g[n_] := g[n] = If[n == 0, 1, Sum[Binomial[n - 1, j - 1]*g[n - j], {j, 1, n}]]; b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[Binomial[g[i], j]*b[n - i*j, i - 1], {j, 0, n/i}]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Mar 12 2022, after Alois P. Heinz *)
Formula
G.f.: Product_{k>=1} (1+x^k)^Bell(k).