cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A305850 Weigh transform of the Bell numbers (A000110).

Original entry on oeis.org

1, 1, 2, 7, 21, 78, 305, 1304, 6007, 29854, 159012, 904986, 5479078, 35150263, 238033523, 1695554145, 12663533586, 98881246850, 805128085616, 6820302066048, 59983405937707, 546690232627480, 5154757226832625, 50208266917662433, 504482106565647708
Offset: 0

Views

Author

Alois P. Heinz, Jun 11 2018

Keywords

Crossrefs

Programs

  • Maple
    g:= proc(n) option remember; `if`(n=0, 1,
          add(binomial(n-1, j-1)*g(n-j), j=1..n))
        end:
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(binomial(g(i), j)*b(n-i*j, i-1), j=0..n/i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..30);
  • Mathematica
    g[n_] := g[n] = If[n == 0, 1,
         Sum[Binomial[n - 1, j - 1]*g[n - j], {j, 1, n}]];
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0,
         Sum[Binomial[g[i], j]*b[n - i*j, i - 1], {j, 0, n/i}]]];
    a[n_] := b[n, n];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Mar 12 2022, after Alois P. Heinz *)

Formula

G.f.: Product_{k>=1} (1+x^k)^Bell(k).