A305852 Weigh transform of the Fubini numbers (ordered Bell numbers, A000670).
1, 1, 3, 16, 91, 658, 5567, 54917, 620081, 7905592, 112382245, 1762646331, 30231516786, 562750751610, 11297034281595, 243241826522376, 5591075279423398, 136633359995403580, 3537193288612096901, 96697587673174195740, 2783492094736121087958
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..424
Programs
-
Maple
g:= proc(n) option remember; `if`(n=0, 1, add(g(n-j)*binomial(n, j), j=1..n)) end: b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(binomial(g(i), j)*b(n-i*j, i-1), j=0..n/i))) end: a:= n-> b(n$2): seq(a(n), n=0..30);
-
Mathematica
g[n_] := g[n] = If[n == 0, 1, Sum[g[n - j] Binomial[n, j], {j, 1, n}]]; b[n_, i_] := b[n, i] = If[n == 0, 1, If[i<1, 0, Sum[Binomial[g[i], j] b[n - i j, i - 1], {j, 0, n/i}]]]; a[n_] := b[n, n]; a /@ Range[0, 30] (* Jean-François Alcover, Dec 21 2020, after Alois P. Heinz *)
Formula
G.f.: Product_{k>=1} (1+x^k)^A000670(k).
a(n) ~ n! / (2 * log(2)^(n+1)). - Vaclav Kotesovec, Sep 10 2019