A305853 Inverse Weigh transform of the Fubini numbers (ordered Bell numbers, A000670).
1, 3, 10, 62, 446, 3975, 41098, 484152, 6390488, 93419965, 1498268466, 26159940522, 494036061550, 10035451747919, 218207845446062, 5057251219752612, 124462048466812950, 3241773988594489244, 89093816361187396674, 2576652694087236419386, 78224564280680539732266
Offset: 1
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..424
Programs
-
Maple
g:= proc(n) option remember; `if`(n=0, 1, add(g(n-j)*binomial(n, j), j=1..n)) end: b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(binomial(a(i), j)*b(n-i*j, i-1), j=0..n/i))) end: a:= proc(n) option remember; g(n)-b(n, n-1) end: seq(a(n), n=1..30);
-
Mathematica
g[n_] := g[n] = If[n == 0, 1, Sum[g[n - j] Binomial[n, j], {j, 1, n}]]; b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[Binomial[a[i], j] b[n - i j, i - 1], {j, 0, n/i}]]]; a[n_] := a[n] = g[n] - b[n, n - 1]; a /@ Range[1, 30] (* Jean-François Alcover, Dec 21 2020, after Alois P. Heinz *)
Formula
Product_{k>=1} (1+x^k)^a(k) = Sum_{n>=0} A000670(n) * x^n.
a(n) ~ n! / (2 * log(2)^(n+1)). - Vaclav Kotesovec, Sep 10 2019