cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A305846 Inverse Weigh transform of the Bell numbers (A000110).

Original entry on oeis.org

1, 2, 3, 11, 34, 138, 610, 2976, 15612, 87905, 526274, 3334988, 22270254, 156173299, 1146640394, 8791427525, 70227355786, 583283756678, 5027823752930, 44903579714037, 414877600876638, 3959945233249877, 38996757506464858, 395749369601741015, 4134132167178705732
Offset: 1

Views

Author

Alois P. Heinz, Jun 11 2018

Keywords

Crossrefs

Programs

  • Maple
    g:= proc(n) option remember; `if`(n=0, 1,
          add(binomial(n-1, j-1)*g(n-j), j=1..n))
        end:
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(binomial(a(i), j)*b(n-i*j, i-1), j=0..n/i)))
        end:
    a:= proc(n) option remember; g(n)-b(n, n-1) end:
    seq(a(n), n=1..30);
  • Mathematica
    g[n_] := g[n] = If[n == 0, 1,
         Sum[Binomial[n-1, j-1]*g[n-j], {j, 1, n}]];
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0,
         Sum[Binomial[a[i], j]*b[n - i*j, i - 1], {j, 0, n/i}]]];
    a[n_] := a[n] = g[n] - b[n, n - 1];
    Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Mar 10 2022, after Alois P. Heinz *)

Formula

Product_{k>=1} (1+x^k)^a(k) = Sum_{n>=0} Bell(n) * x^n.

A305852 Weigh transform of the Fubini numbers (ordered Bell numbers, A000670).

Original entry on oeis.org

1, 1, 3, 16, 91, 658, 5567, 54917, 620081, 7905592, 112382245, 1762646331, 30231516786, 562750751610, 11297034281595, 243241826522376, 5591075279423398, 136633359995403580, 3537193288612096901, 96697587673174195740, 2783492094736121087958
Offset: 0

Views

Author

Alois P. Heinz, Jun 11 2018

Keywords

Crossrefs

Programs

  • Maple
    g:= proc(n) option remember; `if`(n=0, 1,
          add(g(n-j)*binomial(n, j), j=1..n))
        end:
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(binomial(g(i), j)*b(n-i*j, i-1), j=0..n/i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..30);
  • Mathematica
    g[n_] := g[n] = If[n == 0, 1,
        Sum[g[n - j] Binomial[n, j], {j, 1, n}]];
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i<1, 0,
        Sum[Binomial[g[i], j] b[n - i j, i - 1], {j, 0, n/i}]]];
    a[n_] := b[n, n];
    a /@ Range[0, 30] (* Jean-François Alcover, Dec 21 2020, after Alois P. Heinz *)

Formula

G.f.: Product_{k>=1} (1+x^k)^A000670(k).
a(n) ~ n! / (2 * log(2)^(n+1)). - Vaclav Kotesovec, Sep 10 2019
Showing 1-2 of 2 results.