A305846 Inverse Weigh transform of the Bell numbers (A000110).
1, 2, 3, 11, 34, 138, 610, 2976, 15612, 87905, 526274, 3334988, 22270254, 156173299, 1146640394, 8791427525, 70227355786, 583283756678, 5027823752930, 44903579714037, 414877600876638, 3959945233249877, 38996757506464858, 395749369601741015, 4134132167178705732
Offset: 1
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..576
Programs
-
Maple
g:= proc(n) option remember; `if`(n=0, 1, add(binomial(n-1, j-1)*g(n-j), j=1..n)) end: b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(binomial(a(i), j)*b(n-i*j, i-1), j=0..n/i))) end: a:= proc(n) option remember; g(n)-b(n, n-1) end: seq(a(n), n=1..30);
-
Mathematica
g[n_] := g[n] = If[n == 0, 1, Sum[Binomial[n-1, j-1]*g[n-j], {j, 1, n}]]; b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[Binomial[a[i], j]*b[n - i*j, i - 1], {j, 0, n/i}]]]; a[n_] := a[n] = g[n] - b[n, n - 1]; Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Mar 10 2022, after Alois P. Heinz *)
Formula
Product_{k>=1} (1+x^k)^a(k) = Sum_{n>=0} Bell(n) * x^n.