A305872 Number of nonseparable rooted maps of genus n with one vertex and one face.
1, 1, 17, 1259, 200589, 54766516, 22839203295, 13532959408258, 10826939105517381, 11256605684271733244, 14762470788227855508388, 23845795018908512860754771, 46527914721396710095597849515, 107904469663880176355586920421756, 293401777662120053352713701982623322
Offset: 0
Keywords
Links
- Gheorghe Coserea, Table of n, a(n) for n = 0..200
- T. R. S. Walsh, A. B. Lehman, Counting rooted maps by genus. III: Nonseparable maps, J. Combinatorial Theory Ser. B 18 (1975), 222-259.
Crossrefs
Cf. A035319.
Programs
-
Maple
g := 1+x ; for itr from 2 to 14 do g := g+a*x^itr; Ax := add(A035319(i)*x^i,i=0..itr+1) ; x*Ax^4 ; z := subs(x=%,g)-Ax ; z := expand(z) ; z := taylor(z,x=0,itr+1) ; z := convert(z,polynom) ; aa := solve(z,a) ; g := g-a*x^itr+aa*x^itr ; print(g) ; end do:
-
PARI
seq(N) = { my(s = 1+'x*Ser(vector(N, n, (4*n)!/((2*n+1)!*4^n)))); Vec(subst(s, 'x, serreverse('x*s^4))); }; seq(14) \\ Gheorghe Coserea, Jun 13 2018