cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A322022 Lexicographically earliest such sequence a that a(i) = a(j) => A305891(i) = A305891(j) and A319697(i) = A319697(j), for all i, j.

Original entry on oeis.org

1, 2, 3, 4, 3, 5, 3, 6, 7, 8, 3, 9, 3, 10, 11, 12, 3, 13, 3, 14, 11, 15, 3, 16, 7, 17, 18, 19, 3, 20, 3, 21, 11, 22, 11, 23, 3, 24, 11, 25, 3, 26, 3, 27, 28, 29, 3, 30, 7, 31, 11, 32, 3, 33, 11, 34, 11, 35, 3, 36, 3, 37, 28, 38, 11, 39, 3, 40, 11, 39, 3, 41, 3, 42, 28, 43, 11, 44, 3, 45, 46, 47, 3, 48, 11, 49, 11, 50, 3, 51, 11, 52, 11, 53, 11, 54, 3, 55, 28
Offset: 1

Views

Author

Antti Karttunen, Nov 29 2018

Keywords

Comments

Restricted growth sequence transform of the ordered pair [A305891(n), A319697(n)], or equally, of the triple [A007814(n), A046523(n), A319697(n)].

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A007814(n) = valuation(n,2);
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ From A046523
    A319697(n) = sumdiv(n, d, (!(d%2))*issquarefree(d)*d);
    v322022 = rgs_transform(vector(up_to, n, [A007814(n), A046523(n), A319697(n)]));
    A322022(n) = v322022[n];

A305801 Lexicographically earliest infinite sequence such that a(i) = a(j) => f(i) = f(j), where f(n) = 0 if n is an odd prime, with f(n) = n for all other n.

Original entry on oeis.org

1, 2, 3, 4, 3, 5, 3, 6, 7, 8, 3, 9, 3, 10, 11, 12, 3, 13, 3, 14, 15, 16, 3, 17, 18, 19, 20, 21, 3, 22, 3, 23, 24, 25, 26, 27, 3, 28, 29, 30, 3, 31, 3, 32, 33, 34, 3, 35, 36, 37, 38, 39, 3, 40, 41, 42, 43, 44, 3, 45, 3, 46, 47, 48, 49, 50, 3, 51, 52, 53, 3, 54, 3, 55, 56, 57, 58, 59, 3, 60, 61, 62, 3, 63, 64, 65, 66, 67, 3, 68, 69, 70, 71, 72, 73, 74, 3, 75, 76, 77, 3, 78, 3, 79, 80
Offset: 1

Views

Author

Antti Karttunen, Jun 14 2018

Keywords

Comments

The original name was: "Filter sequence for a(odd prime) = constant sequences", which stemmed from the fact that for all i, j, a(i) = a(j) => b(i) = b(j) for any sequence b that obtains a constant value for all odd primes A065091.
For example, we have for all i, j:
a(i) = a(j) => A305800(i) = A305800(j),
a(i) = a(j) => A007814(i) = A007814(j),
a(i) = a(j) => A305891(i) = A305891(j) => A291761(i) = A291761(j).
There are several filter sequences "above" this one (meaning that they have finer equivalence class partitioning), for example, we have, for all i, j:
[where odd primes are further distinguished by]
A305900(i) = A305900(j) => a(i) = a(j), [whether p = 3 or > 3]
A319350(i) = A319350(j) => a(i) = a(j), [A007733(p)]
A319704(i) = A319704(j) => a(i) = a(j), [p mod 4]
A319705(i) = A319705(j) => a(i) = a(j), [A286622(p)]
A331304(i) = A331304(j) => a(i) = a(j), [parity of A000720(p)]
A336855(i) = A336855(j) => a(i) = a(j). [distance to the next larger prime]

Crossrefs

Cf. A305900, A319350, A319704, A319705, A331304, A336855 (sequences with finer equivalence class partitioning).
Cf. also A003602, A103391, A295300, A305795, A324400, A331300, A336460 (for similar constructions or similarly useful sequences).

Programs

  • Mathematica
    Array[If[# <= 2, #, If[PrimeQ[#], 3, 2 + # - PrimePi[#]]] &, 105] (* Michael De Vlieger, Oct 18 2021 *)
  • PARI
    A305801(n) = if(n<=2,n,if(isprime(n),3,2+n-primepi(n)));

Formula

a(1) = 1, a(2) = 2; for n > 2, a(n) = 3 for odd primes, and a(n) = 2+n-A000720(n) for composite n.
For n > 2, a(n) = 1 + A305800(n).

Extensions

Name changed and Comment section rewritten by Antti Karttunen, Oct 17 2021

A157226 Number of primitive inequivalent sublattices of square lattice having mirrors parallel to the sides of the unit cell of the parent lattice of index n.

Original entry on oeis.org

0, 1, 1, 2, 1, 3, 1, 2, 1, 3, 1, 4, 1, 3, 2, 2, 1, 3, 1, 4, 2, 3, 1, 4, 1, 3, 1, 4, 1, 6, 1, 2, 2, 3, 2, 4, 1, 3, 2, 4, 1, 6, 1, 4, 2, 3, 1, 4, 1, 3, 2, 4, 1, 3, 2, 4, 2, 3, 1, 8, 1, 3, 2, 2, 2, 6, 1, 4, 2, 6, 1, 4, 1, 3, 2, 4, 2, 6, 1, 4, 1, 3, 1, 8, 2, 3, 2
Offset: 1

Views

Author

N. J. A. Sloane, Feb 25 2009

Keywords

Comments

Andrey Zabolotskiy's new formula confirms that a(n) indeed is a function of A305891(n). - Antti Karttunen, Oct 01 2018

Crossrefs

Cf. A145393 (all sublattices of the square lattice), A019590, A157228, A157230, A157231, A304182, A007875, A029744.

Programs

Formula

From Andrey Zabolotskiy, Sep 30 2018: (Start)
Let b(n) = A007875(n) for n>1, b(1) = 0. Then
a(n) = b(n) for odd n,
a(n) = b(n) + b(n/2) for even n.
Thus the sorted list of all terms (except for a(1)=0) is A029744. (End)

Extensions

New name and more terms from Andrey Zabolotskiy, May 09 2018

A305893 Filter sequence combining 3-adic valuation (A007949) and the prime signature (A046523) of n.

Original entry on oeis.org

1, 2, 3, 4, 2, 5, 2, 6, 7, 8, 2, 9, 2, 8, 5, 10, 2, 11, 2, 12, 5, 8, 2, 13, 4, 8, 14, 12, 2, 15, 2, 16, 5, 8, 8, 17, 2, 8, 5, 18, 2, 15, 2, 12, 11, 8, 2, 19, 4, 12, 5, 12, 2, 20, 8, 18, 5, 8, 2, 21, 2, 8, 11, 22, 8, 15, 2, 12, 5, 23, 2, 24, 2, 8, 9, 12, 8, 15, 2, 25, 26, 8, 2, 21, 8, 8, 5, 18, 2, 27, 8, 12, 5, 8, 8, 28, 2, 12, 11, 29, 2, 15, 2, 18, 15
Offset: 1

Views

Author

Antti Karttunen, Jun 14 2018

Keywords

Comments

Restricted growth sequence transform of A286463, of the ordered pair [A007949(n), A046523(n)].

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A007949(n) = valuation(n,3);
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ From A046523
    Aux305893(n) = [A007949(n), A046523(n)];
    v305893 = rgs_transform(vector(up_to,n,Aux305893(n)));
    A305893(n) = v305893[n];

A318500 Filter sequence combining A305897 and the parity of n.

Original entry on oeis.org

1, 2, 3, 4, 3, 5, 3, 6, 7, 8, 3, 9, 3, 10, 11, 12, 3, 13, 3, 14, 15, 16, 3, 17, 7, 18, 19, 20, 3, 21, 3, 22, 23, 24, 11, 25, 3, 26, 27, 28, 3, 29, 3, 30, 31, 32, 3, 33, 7, 34, 35, 36, 3, 37, 15, 38, 39, 40, 3, 41, 3, 42, 43, 44, 23, 45, 3, 46, 47, 48, 3, 49, 3, 50, 51, 52, 11, 53, 3, 54, 55, 56, 3, 57, 27, 58, 59, 60, 3, 61, 15, 62, 63, 64, 35, 65, 3, 66, 67, 68, 3, 69, 3
Offset: 1

Views

Author

Antti Karttunen, Sep 24 2018

Keywords

Comments

Restricted growth sequence transform of ordered pair [A000035(n), A246277(n)], or equally, of ordered pair [A007814(n), A246277(n)].
For all i, j:
A305801(i) = A305801(j) => a(i) = a(j) => A305891(i) = A305891(j) => A291761(i) = A291761(j).

Crossrefs

Programs

  • PARI
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A246277(n) = if(1==n, 0, my(f = factor(n), k = primepi(f[1,1])-1); for (i=1, #f~, f[i,1] = prime(primepi(f[i,1])-k)); factorback(f)/2);
    v318500 = rgs_transform(vector(up_to,n,[(n%2),A246277(n)]));
    A318500(n) = v318500[n];

A318888 Filter sequence combining the 2-adic valuation of n (A007814) with the differences between odd primes in the prime factorization of n.

Original entry on oeis.org

1, 2, 3, 4, 3, 5, 3, 6, 7, 5, 3, 8, 3, 5, 9, 10, 3, 11, 3, 8, 12, 5, 3, 13, 7, 5, 14, 8, 3, 15, 3, 16, 17, 5, 9, 18, 3, 5, 19, 13, 3, 20, 3, 8, 21, 5, 3, 22, 7, 11, 23, 8, 3, 24, 25, 13, 26, 5, 3, 27, 3, 5, 28, 29, 17, 30, 3, 8, 31, 15, 3, 32, 3, 5, 33, 8, 12, 34, 3, 22, 35, 5, 3, 36, 37, 5, 38, 13, 3, 39, 25, 8, 40, 5, 23, 41, 3, 11, 42, 18, 3, 43, 3, 13, 44
Offset: 1

Views

Author

Antti Karttunen, Sep 24 2018

Keywords

Comments

Restricted growth sequence transform of an ordered pair [A007814(n), A318885(A000265(n))].
For all i, j: A305801(i) = A305801(j) => a(i) = a(j) => A305891(i) = A305891(j).

Crossrefs

Programs

  • PARI
    up_to = 100000;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A000265(n) = (n/2^valuation(n, 2));
    A007814(n) = valuation(n,2);
    A318885(n) = if(1==n,n,my(f=factor(n),m=2^f[1,2],i=1); for(k=2,#f~,i += (f[k,1]-f[k-1,1]); m *= prime(i)^f[k,2]); (m));
    v318888 = rgs_transform(vector(up_to,n,[A007814(n), A318885(A000265(n))]));
    A318888(n) = v318888[n];

A319347 Filter sequence combining A000035(n) (parity of n), A003557(n), and A046523(n) (prime signature of n).

Original entry on oeis.org

1, 2, 3, 4, 3, 5, 3, 6, 7, 5, 3, 8, 3, 5, 9, 10, 3, 11, 3, 8, 9, 5, 3, 12, 13, 5, 14, 8, 3, 15, 3, 16, 9, 5, 9, 17, 3, 5, 9, 12, 3, 15, 3, 8, 18, 5, 3, 19, 20, 21, 9, 8, 3, 22, 9, 12, 9, 5, 3, 23, 3, 5, 18, 24, 9, 15, 3, 8, 9, 15, 3, 25, 3, 5, 26, 8, 9, 15, 3, 19, 27, 5, 3, 23, 9, 5, 9, 12, 3, 28, 9, 8, 9, 5, 9, 29, 3, 30, 18, 31, 3, 15, 3, 12, 32
Offset: 1

Views

Author

Antti Karttunen, Sep 24 2018

Keywords

Comments

Restricted growth sequence transform of triple [A000035(n), A003557(n), A046523(n)], or equally, of triple [A007814(n), A003557(n), A046523(n)], or equally, of ordered pair [A000035(n), A291757(n)].
For all i, j: A305801(i) = A305801(j) => a(i) = a(j) => A305891(i) = A305891(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A003557(n) = { my(f=factor(n)); for (i=1, #f~, f[i, 2] = f[i, 2]-1); factorback(f); };
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p=0); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };
    v319347 = rgs_transform(vector(up_to,n,[A003557(n),(n%2),A046523(n)]));
    A319347(n) = v319347[n];

A365392 Lexicographically earliest infinite sequence such that a(i) = a(j) => f(i) = f(j) for all i, j >= 1, where f(n) = [A336158(n), A364255(n), A365425(n)].

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 5, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 10, 5, 21, 22, 23, 24, 25, 12, 26, 7, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 19, 39, 10, 5, 40, 41, 42, 43, 44, 45, 46, 47, 48, 20, 23, 12, 49, 12, 13, 50, 51, 52, 53, 54, 55, 56, 57, 16, 58, 59, 60, 61, 62, 63, 64, 18, 65, 66, 67, 36
Offset: 1

Views

Author

Antti Karttunen, Sep 04 2023

Keywords

Comments

Restricted growth sequence transform of triplet [A336158(n), A364255(n), A365425(n)].
For all i, j >= 1:
a(i) = a(j) => A286531(i) = A286531(j),
a(i) = a(j) => A305891(i) = A305891(j),
a(i) = a(j) => A365391(i) = A365391(j),
a(i) = a(j) => A365421(i) = A365421(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A000265(n) = (n>>valuation(n,2));
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ From A046523
    A163511(n) = if(!n, 1, my(p=2, t=1); while(n>1, if(!(n%2), (t*=p), p=nextprime(1+p)); n >>= 1); (t*p));
    A364255(n) = gcd(n, A163511(n));
    A365392aux(n) = [A364255(n), A046523(A000265(n)), A046523(A000265(A163511(n)))];
    v365392 = rgs_transform(vector(up_to,n,A365392aux(n)));
    A365392(n) = v365392[n];

A358230 Lexicographically earliest infinite sequence such that a(i) = a(j) => A007814(i) = A007814(j), A007949(i) = A007949(j) and A046523(i) = A046523(j), for all i, j, where A007814 and A007949 give the 2-adic and 3-adic valuation, and A046523 gives the prime signature of its argument.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 5, 7, 8, 9, 5, 10, 5, 9, 11, 12, 5, 13, 5, 14, 11, 9, 5, 15, 16, 9, 17, 14, 5, 18, 5, 19, 11, 9, 20, 21, 5, 9, 11, 22, 5, 18, 5, 14, 23, 9, 5, 24, 16, 25, 11, 14, 5, 26, 20, 22, 11, 9, 5, 27, 5, 9, 23, 28, 20, 18, 5, 14, 11, 29, 5, 30, 5, 9, 31, 14, 20, 18, 5, 32, 33, 9, 5, 27, 20, 9, 11, 22, 5, 34, 20, 14, 11, 9, 20, 35, 5, 25, 23, 36, 5, 18, 5, 22, 37
Offset: 1

Views

Author

Antti Karttunen, Dec 01 2022

Keywords

Comments

Restricted growth sequence transform of the triple [A007814(n), A007949(n), A046523(n)].
For all i, j:
A305900(i) = A305900(j) => a(i) = a(j),
a(i) = a(j) => A305891(i) = A305891(j),
a(i) = a(j) => A305893(i) = A305893(j),
a(i) = a(j) => A322026(i) = A322026(j) => A072078(i) = A072078(j),
a(i) = a(j) => A065333(i) = A065333(j).

Crossrefs

Programs

  • PARI
    up_to = 100000;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A007814(n) = valuation(n,2);
    A007949(n) = valuation(n,3);
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ From A046523
    v358230 = rgs_transform(vector(up_to, n, [A007814(n), A007949(n), A046523(n)]));
    A358230(n) = v358230[n];

A379002 Lexicographically earliest infinite sequence such that a(i) = a(j) => A046523(i) = A046523(j) and A112765(i) = A112765(j), for all i, j, where A046523 gives the least representative of the prime signature of n and A112765 gives the 5-adic valuation of n.

Original entry on oeis.org

1, 2, 2, 3, 4, 5, 2, 6, 3, 7, 2, 8, 2, 5, 7, 9, 2, 8, 2, 10, 5, 5, 2, 11, 12, 5, 6, 8, 2, 13, 2, 14, 5, 5, 7, 15, 2, 5, 5, 16, 2, 17, 2, 8, 10, 5, 2, 18, 3, 19, 5, 8, 2, 11, 7, 11, 5, 5, 2, 20, 2, 5, 8, 21, 7, 17, 2, 8, 5, 13, 2, 22, 2, 5, 19, 8, 5, 17, 2, 23, 9, 5, 2, 24, 7, 5, 5, 11, 2, 20, 5, 8, 5, 5, 7, 25, 2, 8, 8, 26, 2, 17, 2, 11, 13
Offset: 1

Views

Author

Antti Karttunen, Dec 15 2024

Keywords

Comments

Restricted growth sequence transform of ordered pair [A046523(n), A112765(n)].
For all i, j:
A379001(i) = A379001(j) => a(i) = a(j).

Crossrefs

Programs

  • PARI
    up_to = 100000;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };
    v379002 = rgs_transform(vector(up_to, n, [A046523(n), valuation(n,5)]));
    A379002(n) = v379002[n];
Showing 1-10 of 11 results. Next