A305962 Number A(n,k) of length-n restricted growth strings (RGS) with growth <= k and fixed first element; square array A(n,k), n>=0, k>=0, read by antidiagonals.
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 5, 1, 1, 1, 4, 12, 15, 1, 1, 1, 5, 22, 59, 52, 1, 1, 1, 6, 35, 150, 339, 203, 1, 1, 1, 7, 51, 305, 1200, 2210, 877, 1, 1, 1, 8, 70, 541, 3125, 10922, 16033, 4140, 1, 1, 1, 9, 92, 875, 6756, 36479, 110844, 127643, 21147, 1
Offset: 0
A306028 Number of length-n restricted growth strings (RGS) with growth <= four and first element in [4].
1, 4, 26, 214, 2096, 23578, 297692, 4150798, 63148652, 1038505282, 18324165284, 344791676446, 6883214479964, 145160792680210, 3221934217192772, 75022325591768782, 1827426669105650588, 46448931646662304066, 1229212096172351894852, 33800410177112965182910
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..459
Programs
-
Maple
b:= proc(n, m) option remember; `if`(n=0, 1, add(b(n-1, max(m, j)), j=1..m+4)) end: a:= n-> b(n, 0): seq(a(n), n=0..25); # second Maple program: a:= n-> n!*coeff(series(exp(add((exp(j*x)-1)/j, j=1..4)), x, n+1), x, n): seq(a(n), n=0..25);
Formula
E.g.f.: exp(Sum_{j=1..4} (exp(j*x)-1)/j).
Comments
Examples
Links
Crossrefs
Programs
Maple
Mathematica
Formula