A306024 Number A(n,k) of length-n restricted growth strings (RGS) with growth <= k and first element in [k]; square array A(n,k), n>=0, k>=0, read by antidiagonals.
1, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 7, 5, 0, 1, 4, 15, 31, 15, 0, 1, 5, 26, 95, 164, 52, 0, 1, 6, 40, 214, 717, 999, 203, 0, 1, 7, 57, 405, 2096, 6221, 6841, 877, 0, 1, 8, 77, 685, 4875, 23578, 60619, 51790, 4140, 0, 1, 9, 100, 1071, 9780, 67354, 297692, 652595, 428131, 21147, 0
Offset: 0
A305964 Number of length-n restricted growth strings (RGS) with growth <= four and fixed first element.
1, 1, 5, 35, 305, 3125, 36479, 475295, 6811205, 106170245, 1784531879, 32117927231, 615413731205, 12493421510405, 267608512061159, 6026688403933967, 142256385130774229, 3509899012049396645, 90301862963332188839, 2417349828110572405823, 67201548131159391828677
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..460
Programs
-
Maple
b:= proc(n, m) option remember; `if`(n=0, 1, add(b(n-1, max(m, j)), j=1..m+4)) end: a:= n-> b(n, -3): seq(a(n), n=0..25); # second Maple program: a:= n-> `if`(n=0, 1, (n-1)!*coeff(series(exp(x+add( (exp(j*x)-1)/j, j=1..4)), x, n), x, n-1)): seq(a(n), n=0..25);
Formula
a(n) = (n-1)! * [x^(n-1)] exp(x+Sum_{j=1..4} (exp(j*x)-1)/j) for n>0, a(0) = 1.
A355422 Expansion of e.g.f. exp(Sum_{k=1..4} (exp(k*x) - 1)).
1, 10, 130, 2000, 35054, 684000, 14628190, 338990000, 8438270014, 224070580800, 6311530677150, 187702155610000, 5870416574854974, 192423935736656800, 6591135679171866910, 235315671951948070000, 8736534653549465359934
Offset: 0
Keywords
Programs
-
PARI
my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(sum(k=1, 4, exp(k*x)-1))))
-
PARI
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, (1+2^j+3^j+4^j)*binomial(i-1, j-1)*v[i-j+1])); v;
Formula
a(0) = 1; a(n) = Sum_{k=1..n} (1 + 2^k + 3^k + 4^k) * binomial(n-1,k-1) * a(n-k).
Comments
Examples
Links
Crossrefs
Programs
Maple
Mathematica
Formula