cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A306024 Number A(n,k) of length-n restricted growth strings (RGS) with growth <= k and first element in [k]; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 7, 5, 0, 1, 4, 15, 31, 15, 0, 1, 5, 26, 95, 164, 52, 0, 1, 6, 40, 214, 717, 999, 203, 0, 1, 7, 57, 405, 2096, 6221, 6841, 877, 0, 1, 8, 77, 685, 4875, 23578, 60619, 51790, 4140, 0, 1, 9, 100, 1071, 9780, 67354, 297692, 652595, 428131, 21147, 0
Offset: 0

Views

Author

Alois P. Heinz, Jun 17 2018

Keywords

Comments

A(n,k) counts strings [s_1, ..., s_n] with 1 <= s_i <= k + max(0, max_{j

Examples

			A(2,3) = 15: 11, 12, 13, 14, 21, 22, 23, 24, 25, 31, 32, 33, 34, 35, 36.
A(4,1) = 15: 1111, 1112, 1121, 1122, 1123, 1211, 1212, 1213, 1221, 1222, 1223, 1231, 1232, 1233, 1234.
Square array A(n,k) begins:
  1,   1,    1,     1,      1,       1,       1,       1, ...
  0,   1,    2,     3,      4,       5,       6,       7, ...
  0,   2,    7,    15,     26,      40,      57,      77, ...
  0,   5,   31,    95,    214,     405,     685,    1071, ...
  0,  15,  164,   717,   2096,    4875,    9780,   17689, ...
  0,  52,  999,  6221,  23578,   67354,  160201,  335083, ...
  0, 203, 6841, 60619, 297692, 1044045, 2943277, 7117789, ...
		

Crossrefs

Main diagonal gives A306025.
Antidiagonal sums give A306026.
Cf. A305962.

Programs

  • Maple
    b:= proc(n, k, m) option remember; `if`(n=0, 1,
          add(b(n-1, k, max(m, j)), j=1..m+k))
        end:
    A:= (n, k)-> b(n, k, 0):
    seq(seq(A(n, d-n), n=0..d), d=0..12);
    # second Maple program:
    A:= (n, k)-> n!*coeff(series(exp(add(
        (exp(j*x)-1)/j, j=1..k)), x, n+1), x, n):
    seq(seq(A(n, d-n), n=0..d), d=0..12);
  • Mathematica
    b[n_, k_, m_] := b[n, k, m] = If[n==0, 1, Sum[b[n-1, k, Max[m, j]], {j, 1, m+k}]];
    A[n_, k_] := b[n, k, 0];
    Table[A[n, d-n], {d, 0, 12}, {n, 0, d}] // Flatten (* Jean-François Alcover, May 27 2019, after Alois P. Heinz *)

Formula

E.g.f. of column k: exp(Sum_{j=1..k} (exp(j*x)-1)/j).

A305964 Number of length-n restricted growth strings (RGS) with growth <= four and fixed first element.

Original entry on oeis.org

1, 1, 5, 35, 305, 3125, 36479, 475295, 6811205, 106170245, 1784531879, 32117927231, 615413731205, 12493421510405, 267608512061159, 6026688403933967, 142256385130774229, 3509899012049396645, 90301862963332188839, 2417349828110572405823, 67201548131159391828677
Offset: 0

Author

Alois P. Heinz, Jun 15 2018

Keywords

Crossrefs

Column k=4 of A305962.
Cf. A306028.

Programs

  • Maple
    b:= proc(n, m) option remember; `if`(n=0, 1,
          add(b(n-1, max(m, j)), j=1..m+4))
        end:
    a:= n-> b(n, -3):
    seq(a(n), n=0..25);
    # second Maple program:
    a:= n-> `if`(n=0, 1, (n-1)!*coeff(series(exp(x+add(
               (exp(j*x)-1)/j, j=1..4)), x, n), x, n-1)):
    seq(a(n), n=0..25);

Formula

a(n) = (n-1)! * [x^(n-1)] exp(x+Sum_{j=1..4} (exp(j*x)-1)/j) for n>0, a(0) = 1.

A355422 Expansion of e.g.f. exp(Sum_{k=1..4} (exp(k*x) - 1)).

Original entry on oeis.org

1, 10, 130, 2000, 35054, 684000, 14628190, 338990000, 8438270014, 224070580800, 6311530677150, 187702155610000, 5870416574854974, 192423935736656800, 6591135679171866910, 235315671951948070000, 8736534653549465359934
Offset: 0

Author

Seiichi Manyama, Jul 01 2022

Keywords

Crossrefs

Column k=4 of A355423.

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(sum(k=1, 4, exp(k*x)-1))))
    
  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, (1+2^j+3^j+4^j)*binomial(i-1, j-1)*v[i-j+1])); v;

Formula

a(0) = 1; a(n) = Sum_{k=1..n} (1 + 2^k + 3^k + 4^k) * binomial(n-1,k-1) * a(n-k).
Showing 1-3 of 3 results.