1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 5, 1, 1, 1, 4, 12, 15, 1, 1, 1, 5, 22, 59, 52, 1, 1, 1, 6, 35, 150, 339, 203, 1, 1, 1, 7, 51, 305, 1200, 2210, 877, 1, 1, 1, 8, 70, 541, 3125, 10922, 16033, 4140, 1, 1, 1, 9, 92, 875, 6756, 36479, 110844, 127643, 21147, 1
Offset: 0
A306027
Number of length-n restricted growth strings (RGS) with growth <= three and first element in [3].
Original entry on oeis.org
1, 3, 15, 95, 717, 6221, 60619, 652595, 7667957, 97415437, 1328078067, 19310628827, 297932883437, 4856255827013, 83315165338923, 1499606140412403, 28237439054261893, 554849548137840189, 11351488777441797187, 241314920928367232747, 5320846918247724517117
Offset: 0
a(2) = 15: 11, 12, 13, 14, 21, 22, 23, 24, 25, 31, 32, 33, 34, 35, 36.
-
b:= proc(n, m) option remember; `if`(n=0, 1,
add(b(n-1, max(m, j)), j=1..m+3))
end:
a:= n-> b(n, 0):
seq(a(n), n=0..25);
# second Maple program:
a:= n-> n!*coeff(series(exp(add((exp(j*x)-1)/j, j=1..3)), x, n+1), x, n):
seq(a(n), n=0..25);
A306028
Number of length-n restricted growth strings (RGS) with growth <= four and first element in [4].
Original entry on oeis.org
1, 4, 26, 214, 2096, 23578, 297692, 4150798, 63148652, 1038505282, 18324165284, 344791676446, 6883214479964, 145160792680210, 3221934217192772, 75022325591768782, 1827426669105650588, 46448931646662304066, 1229212096172351894852, 33800410177112965182910
Offset: 0
-
b:= proc(n, m) option remember; `if`(n=0, 1,
add(b(n-1, max(m, j)), j=1..m+4))
end:
a:= n-> b(n, 0):
seq(a(n), n=0..25);
# second Maple program:
a:= n-> n!*coeff(series(exp(add((exp(j*x)-1)/j, j=1..4)), x, n+1), x, n):
seq(a(n), n=0..25);
A306025
Number of length-n restricted growth strings (RGS) with growth <= n and first element in [n].
Original entry on oeis.org
1, 1, 7, 95, 2096, 67354, 2943277, 166862583, 11858631472, 1029154793775, 106837050484924, 13046411412001307, 1848336205780389404, 300289842081446066173, 55393980428260038660617, 11503469972529028999979343, 2669299049110696359069533376
Offset: 0
a(0) = 1: the empty string.
a(1) = 1: 1.
a(2) = 7: 11, 12, 13, 21, 22, 23, 24.
-
b:= proc(n, k, m) option remember; `if`(n=0, 1,
add(b(n-1, k, max(m, j)), j=1..m+k))
end:
a:= n-> b(n$2, 0):
seq(a(n), n=0..20);
# second Maple program:
a:= n-> n!*coeff(series(exp(add((exp(j*x)-1)/j, j=1..n)), x, n+1), x, n):
seq(a(n), n=0..20);
-
b[n_, k_, m_] := b[n, k, m] = If[n == 0, 1,
Sum[b[n - 1, k, Max[m, j]], {j, 1, m + k}]];
a[n_] := b[n, n, 0];
Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Sep 07 2022, after Alois P. Heinz *)
A306029
Number of length-n restricted growth strings (RGS) with growth <= five and first element in [5].
Original entry on oeis.org
1, 5, 40, 405, 4875, 67354, 1044045, 17867125, 333554020, 6730070329, 145676361731, 3362266525430, 82326965117385, 2129349953723509, 57961263778376192, 1655067729384150829, 49437118345913831595, 1540860755766376984434, 50000885646431513577973
Offset: 0
-
b:= proc(n, m) option remember; `if`(n=0, 1,
add(b(n-1, max(m, j)), j=1..m+5))
end:
a:= n-> b(n, 0):
seq(a(n), n=0..25);
# second Maple program:
a:= n-> n!*coeff(series(exp(add((exp(j*x)-1)/j, j=1..5)), x, n+1), x, n):
seq(a(n), n=0..25);
A306030
Number of length-n restricted growth strings (RGS) with growth <= six and first element in [6].
Original entry on oeis.org
1, 6, 57, 685, 9780, 160201, 2943277, 59687920, 1320233315, 31557691541, 809161436022, 22121068343155, 641530646758325, 19651776950222806, 633510644286624717, 21422880077590022265, 757789084383273607060, 27969244566731240796621, 1074750913823536151018737
Offset: 0
-
b:= proc(n, m) option remember; `if`(n=0, 1,
add(b(n-1, max(m, j)), j=1..m+6))
end:
a:= n-> b(n, 0):
seq(a(n), n=0..25);
# second Maple program:
a:= n-> n!*coeff(series(exp(add((exp(j*x)-1)/j, j=1..6)), x, n+1), x, n):
seq(a(n), n=0..25);
A306031
Number of length-n restricted growth strings (RGS) with growth <= seven and first element in [7].
Original entry on oeis.org
1, 7, 77, 1071, 17689, 335083, 7117789, 166862583, 4266097185, 117856459427, 3492369757317, 110332338885167, 3697474419284233, 130877053323860507, 4875005854140483629, 190478720135836588519, 7784916624799021983345, 331981949761308979115795
Offset: 0
-
b:= proc(n, m) option remember; `if`(n=0, 1,
add(b(n-1, max(m, j)), j=1..m+7))
end:
a:= n-> b(n, 0):
seq(a(n), n=0..25);
# second Maple program:
a:= n-> n!*coeff(series(exp(add((exp(j*x)-1)/j, j=1..7)), x, n+1), x, n):
seq(a(n), n=0..25);
A306032
Number of length-n restricted growth strings (RGS) with growth <= eight and first element in [8].
Original entry on oeis.org
1, 8, 100, 1580, 29632, 637220, 15363376, 408744260, 11858631472, 371738275844, 12498545568496, 447999414313412, 17033296095318832, 684009592157461508, 28904630032314771184, 1281216363971401581764, 59402574686629293902896, 2873649326399265142739972
Offset: 0
-
b:= proc(n, m) option remember; `if`(n=0, 1,
add(b(n-1, max(m, j)), j=1..m+8))
end:
a:= n-> b(n, 0):
seq(a(n), n=0..25);
# second Maple program:
a:= n-> n!*coeff(series(exp(add((exp(j*x)-1)/j, j=1..8)), x, n+1), x, n):
seq(a(n), n=0..25);
Comments