1, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 7, 5, 0, 1, 4, 15, 31, 15, 0, 1, 5, 26, 95, 164, 52, 0, 1, 6, 40, 214, 717, 999, 203, 0, 1, 7, 57, 405, 2096, 6221, 6841, 877, 0, 1, 8, 77, 685, 4875, 23578, 60619, 51790, 4140, 0, 1, 9, 100, 1071, 9780, 67354, 297692, 652595, 428131, 21147, 0
Offset: 0
A293181
Irregular triangle read by rows: T(n,k) is the number of k-partitions of {1..2n} that are invariant under a permutation consisting of n 2-cycles (1 <= k <= 2n).
Original entry on oeis.org
1, 1, 1, 3, 2, 1, 1, 7, 10, 9, 3, 1, 1, 15, 38, 53, 34, 18, 4, 1, 1, 31, 130, 265, 261, 195, 80, 30, 5, 1, 1, 63, 422, 1221, 1700, 1696, 1016, 515, 155, 45, 6, 1, 1, 127, 1330, 5369, 10143, 13097, 10508, 6832, 2926, 1120, 266, 63, 7, 1
Offset: 1
Triangle begins:
1, 1;
1, 3, 2, 1;
1, 7, 10, 9, 3, 1;
1, 15, 38, 53, 34, 18, 4, 1;
1, 31, 130, 265, 261, 195, 80, 30, 5, 1;
1, 63, 422, 1221, 1700, 1696, 1016, 515, 155, 45, 6, 1;
1, 127, 1330, 5369, 10143, 13097, 10508, 6832, 2926, 1120, 266, 63, 7, 1;
...
For T(2,2)=3, the row patterns are AABB, ABAB, and ABBA. The loop patterns are AAAB, AABB, and ABAB. - _Robert A. Russell_, Apr 24 2018
Number of achiral color patterns of length odd n in
A140735.
-
(* Ach[n, k] is the number of achiral color patterns for a row or loop of n
colors containing k different colors *)
Ach[n_, k_] := Ach[n, k] = Which[0==k, Boole[0==n], 1==k, Boole[n>0],
OddQ[n], Sum[Binomial[(n-1)/2, i] Ach[n-1-2i, k-1], {i, 0, (n-1)/2}],
True, Sum[Binomial[n/2-1, i] (Ach[n-2-2i, k-1]
+ 2^i Ach[n-2-2i, k-2]), {i, 0, n/2-1}]]
Table[Ach[n, k], {n, 2, 14, 2}, {k, 1, n}] // Flatten
(* Robert A. Russell, Feb 06 2018 *)
Table[Drop[MatrixPower[Table[Switch[j-i, 0, i-1, 1, 1, 2, 1, _, 0],
{i, 1, 2n+1}, {j, 1, 2n+1}], n][[1]], 1], {n, 1, 10}] // Flatten
(* Robert A. Russell, Apr 14 2018 *)
Aeven[m_, k_] := Aeven[m, k] = If[m>0, k Aeven[m-1, k] + Aeven[m-1, k-1]
+ Aeven[m-1, k-2], Boole[m == 0 && k == 0]]
Table[Aeven[m, k], {m, 1, 10}, {k, 1, 2m}] // Flatten (* Robert A. Russell, Apr 24 2018 *)
-
\\ see A056391 for Polya enumeration functions
T(n,k) = 2*NonequivalentStructsExactly(CylinderPerms(2,n),k) - stirling(2*n,k,2);
-
seq(n)={Vec(serlaplace(exp(y*(exp(x + O(x*x^n))-1)+(1/2)*y^2*(exp(2*x + O(x*x^n))-1))) - 1)}
{my(T=seq(10)); for(n=1, #T, for(k=1, 2*n, print1(polcoeff(T[n], k), ", ")); print)} \\ Andrew Howroyd, Jan 31 2018
A002873
The maximal number of partitions of {1..2n} that are invariant under a permutation consisting of n 2-cycles, and which have the same number of nonempty parts.
Original entry on oeis.org
1, 1, 3, 10, 53, 265, 1700, 13097, 96796, 829080, 8009815, 75604892, 808861988, 9175286549, 106167118057, 1320388106466, 16950041305210, 233232366601078, 3243603207488124, 47776065074368313, 733990397879859192, 11515503147927664816, 189107783918416912912
Offset: 0
There are three partitions of {1,2,3,4} into two (nonempty) parts, and which are invariant under the permutation (1,2)(3,4), namely {{1,2}, {3,4}}, {{1,3}, {2,4}}, and {{1,4}, {2,3}}. There are also one such partition with just one part, two with three parts, and one with four parts; but three is the largest of these amounts. Thus, a(2) = 3.
Similarly, there are ten (1,2)(3,4)(5,6) invariant partitions of {1,2,3,4,5,6} into three nonempty parts, and no larger amount into any other given number of parts, whence a(3) = 10.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Alois P. Heinz, Table of n, a(n) for n = 0..514
- Victor Meally, Comparison of several sequences given in Motzkin's paper "Sorting numbers for cylinders...", letter to N. J. A. Sloane, N. D.
- T. S. Motzkin, Sorting numbers for cylinders and other classification numbers, in Combinatorics, Proc. Symp. Pure Math. 19, AMS, 1971, pp. 167-176. [Annotated, scanned copy]
- OEIS Wiki, Sorting numbers
- Index entries for sequences related to sorting
A002875
Sorting numbers (see Motzkin article for details).
Original entry on oeis.org
1, 2, 4, 24, 128, 880, 7440
Offset: 0
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Victor Meally, Comparison of several sequences given in Motzkin's paper "Sorting numbers for cylinders...", letter to N. J. A. Sloane, N. D.
- T. S. Motzkin, Sorting numbers for cylinders and other classification numbers, in Combinatorics, Proc. Symp. Pure Math. 19, AMS, 1971, pp. 167-176. [Annotated, scanned copy]
- OEIS Wiki, Sorting numbers
- Index entries for sequences related to sorting
Comments