cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A002872 Number of partitions of {1..2n} that are invariant under a permutation consisting of n 2-cycles.

Original entry on oeis.org

1, 2, 7, 31, 164, 999, 6841, 51790, 428131, 3827967, 36738144, 376118747, 4086419601, 46910207114, 566845074703, 7186474088735, 95318816501420, 1319330556537631, 19013488408858761, 284724852032757686, 4422344774431494155, 71125541977466879231
Offset: 0

Views

Author

Keywords

Comments

Previous name was: Sorting numbers.
a(n) = number of symmetric partitions of the set {-n,...,-1,1,...,n}. A partition of {-n,...,-1,1,...,n} into nonempty subsets X_1,...,X_k is 'symmetric' if for each i, -X_i=X_j for some j. a(n) = S_B(n,1)+...+S_B(n,n) where S_B(n,k) is as in A085483. a(n) is the n-th Bell number of 'type B'. - James East, Aug 18 2003
Column 2 of A162663. - Franklin T. Adams-Watters, Jul 09 2009
a(n) is equal to the sum of all expressions of the form p(1^n)[st(lambda)] for partitions lambda of order less than or equal to n, where p(1^n)[st(lambda)] denotes the coefficient of the irreducible character basis element indexed by the partition lambda in the expansion of the power sum basis element indexed by the partition (1^n). - John M. Campbell, Sep 16 2017
Number of achiral color patterns in a row or loop of length 2n. Two color patterns are equivalent if the colors are permuted. - Robert A. Russell, Apr 24 2018
Stirling transform of A005425 per Knuth reference. - Robert A. Russell, Apr 28 2018

Examples

			For a(2)=7, the row patterns are AAAA, AABB, ABAB, ABBA, ABBC, ABCA, and ABCD.  The loop patterns are AAAA, AAAB, AABB, AABC, ABAB, ABAC, and ABCD. - _Robert A. Russell_, Apr 24 2018
		

References

  • D. E. Knuth, The Art of Computer Programming, vol. 4A, Combinatorial Algorithms, Section 7.2.1.5 (p. 765). - Robert A. Russell, Apr 28 2018
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

u[n,j] is A162663.
Row sums of A293181.
Column k=2 of A306024.
Cf. A005425.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, add((1+
          2^(j-1))*binomial(n-1, j-1)*a(n-j), j=1..n))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Oct 29 2015
  • Mathematica
    u[0,j_]:=1;u[k_,j_]:=u[k,j]=Sum[Binomial[k-1,i-1]Plus@@(u[k-i,j]#^(i-1)&/@Divisors[j]),{i,k}]; Table[u[n,2],{n,0,12}] (* Wouter Meeussen, Dec 06 2008 *)
    mx = 16; p = 2; Range[0, mx]! CoefficientList[ Series[ Exp[ (Exp[p*x] - p - 1)/p + Exp[x]], {x, 0, mx}], x] (* Robert G. Wilson v, Dec 12 2012 *)
    Aeven[m_, k_] := Aeven[m, k] = If[m>0, k Aeven[m-1, k] + Aeven[m-1, k-1]
      + Aeven[m-1, k-2], Boole[m==0 && k==0]]
    Table[Sum[Aeven[m, k], {k, 0, 2m}], {m, 0, 30}] (* Robert A. Russell, Apr 24 2018 *)
    x[n_] := x[n] = If[n<2, n+1, 2x[n-1] + (n-1)x[n-2]]; (* A005425 *)
    Table[Sum[StirlingS2[n, k] x[k], {k, 0, n}], {n, 0, 20}] (* Robert A. Russell, Apr 28 2018, from Knuth reference *)
    Table[Sum[Binomial[n,k] * 2^k * BellB[k, 1/2] * BellB[n-k], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Jun 29 2022 *)

Formula

E.g.f.: e^( (e^(2x) - 3)/2 + e^x ).
a(n) = A080107(2n) for all n. - Jörgen Backelin, Jan 13 2016
From Robert A. Russell, Apr 24 2018: (Start)
Aeven(n,k) = [n>0]*(k*Aeven(n-1,k)+Aeven(n-1,k-1)+Aeven(n-1,k-2))
+ [n==0]*[k==0]
a(n) = Sum_{k=0..2n} Aeven(n,k). (End)
a(n) = Sum_{k=0..n} Stirling2(n, k)*A005425(k). (from Knuth reference) - Robert A. Russell, Apr 28 2018
a(n) ~ exp(exp(2*r)/2 + exp(r) - 3/2 - n) * (n/r)^(n + 1/2) / sqrt((1 + 2*r)*exp(2*r) + (1 + r)*exp(r)), where r = LambertW(2*n)/2 - 1/(1 + 2/LambertW(2*n) + n^(1/2) * (1 + LambertW(2*n)) * (2/LambertW(2*n))^(3/2)). - Vaclav Kotesovec, Jul 03 2022
a(n) ~ (2*n/LambertW(2*n))^n * exp(n/LambertW(2*n) + (2*n/LambertW(2*n))^(1/2) - n - 7/4) / sqrt(1 + LambertW(2*n)). - Vaclav Kotesovec, Jul 10 2022

Extensions

Edited by Franklin T. Adams-Watters, Jul 09 2009

A293181 Irregular triangle read by rows: T(n,k) is the number of k-partitions of {1..2n} that are invariant under a permutation consisting of n 2-cycles (1 <= k <= 2n).

Original entry on oeis.org

1, 1, 1, 3, 2, 1, 1, 7, 10, 9, 3, 1, 1, 15, 38, 53, 34, 18, 4, 1, 1, 31, 130, 265, 261, 195, 80, 30, 5, 1, 1, 63, 422, 1221, 1700, 1696, 1016, 515, 155, 45, 6, 1, 1, 127, 1330, 5369, 10143, 13097, 10508, 6832, 2926, 1120, 266, 63, 7, 1
Offset: 1

Views

Author

Andrew Howroyd, Oct 01 2017

Keywords

Comments

See A002872 for detailed description.
T(m,k) is the number of achiral color patterns in a row or loop of length 2m using exactly k different colors. Two color patterns are equivalent if we permute the colors. - Robert A. Russell, Apr 24 2018
T(n,k) = coefficient of x^k for A(2,n)(x) in Gilbert and Riordan's article. - Robert A. Russell, Jun 14 2018

Examples

			Triangle begins:
  1,   1;
  1,   3,    2,    1;
  1,   7,   10,    9,     3,     1;
  1,  15,   38,   53,    34,    18,     4,    1;
  1,  31,  130,  265,   261,   195,    80,   30,    5,    1;
  1,  63,  422, 1221,  1700,  1696,  1016,  515,  155,   45,   6,  1;
  1, 127, 1330, 5369, 10143, 13097, 10508, 6832, 2926, 1120, 266, 63, 7, 1;
  ...
For T(2,2)=3, the row patterns are AABB, ABAB, and ABBA.  The loop patterns are AAAB, AABB, and ABAB. - _Robert A. Russell_, Apr 24 2018
		

Crossrefs

Row sums are A002872.
Maximum row values are A002873.
Number of achiral color patterns of length odd n in A140735.
Column k=3 gives A056182.

Programs

  • Mathematica
    (* Ach[n, k] is the number of achiral color patterns for a row or loop of n
      colors containing k different colors *)
    Ach[n_, k_] := Ach[n, k] = Which[0==k, Boole[0==n], 1==k, Boole[n>0],
      OddQ[n], Sum[Binomial[(n-1)/2, i] Ach[n-1-2i, k-1], {i, 0, (n-1)/2}],
      True, Sum[Binomial[n/2-1, i] (Ach[n-2-2i, k-1]
      + 2^i Ach[n-2-2i, k-2]), {i, 0, n/2-1}]]
    Table[Ach[n, k], {n, 2, 14, 2}, {k, 1, n}] // Flatten
    (* Robert A. Russell, Feb 06 2018 *)
    Table[Drop[MatrixPower[Table[Switch[j-i, 0, i-1, 1, 1, 2, 1, _, 0],
      {i, 1, 2n+1}, {j, 1, 2n+1}], n][[1]], 1], {n, 1, 10}] // Flatten
    (* Robert A. Russell, Apr 14 2018 *)
    Aeven[m_, k_] := Aeven[m, k] = If[m>0, k Aeven[m-1, k] + Aeven[m-1, k-1]
      + Aeven[m-1, k-2], Boole[m == 0 && k == 0]]
    Table[Aeven[m, k], {m, 1, 10}, {k, 1, 2m}] // Flatten (* Robert A. Russell, Apr 24 2018 *)
  • PARI
    \\ see A056391 for Polya enumeration functions
    T(n,k) = 2*NonequivalentStructsExactly(CylinderPerms(2,n),k) - stirling(2*n,k,2);
    
  • PARI
    seq(n)={Vec(serlaplace(exp(y*(exp(x + O(x*x^n))-1)+(1/2)*y^2*(exp(2*x + O(x*x^n))-1))) - 1)}
    {my(T=seq(10)); for(n=1, #T, for(k=1, 2*n, print1(polcoeff(T[n], k), ", ")); print)} \\ Andrew Howroyd, Jan 31 2018

Formula

T(n,k) = coefficient of t^k x^n/n! in exp(t*(exp(x)-1)+(1/2)*t^2*(exp(2*x)-1)). - Ira M. Gessel, Jan 30 2018
T(m,k) = [m>0]*(k*T(m-1,k)+T(m-1,k-1)+T(m-1,k-2)) + [m==0]*[k==0]. - Robert A. Russell, Apr 24 2018
Conjecture: T(n,k) = R(n,k)-R(n,k-1), with R(n,k) = Sum_{m=0..k} m^n*A000085(m)*A038205(k-m)/(m!*(k-m)!). - Mikhail Kurkov, Jun 26 2018

A002875 Sorting numbers (see Motzkin article for details).

Original entry on oeis.org

1, 2, 4, 24, 128, 880, 7440
Offset: 0

Views

Author

Keywords

Comments

How is the sequence defined (see the links in A000262)? Also more terms would be welcome.
Based on the Motzkin article, where this sequence appears in the last row of the table on p. 173, one would expect that this sequence is the same as A294202. However, they seem to be unrelated. So the true definition of this sequence is a mystery. - Andrew Howroyd and Andrey Zabolotskiy, Oct 25 2017

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A036074 Expansion of e.g.f. exp((exp(p*x) - p - 1)/p + exp(x)) for p=4.

Original entry on oeis.org

1, 2, 9, 55, 412, 3619, 36333, 408888, 5080907, 68914023, 1011165446, 15935379409, 268125052373, 4792458452162, 90605469012877, 1805135197261131, 37775862401203916, 827992670793489263
Offset: 0

Views

Author

Keywords

References

  • T. S. Motzkin, Sorting numbers for cylinders and other classification numbers, in Combinatorics, Proc. Symp. Pure Math. 19, AMS, 1971, pp. 167-176.
  • T. S. Motzkin, Sorting numbers ...: for a link to an annotated scanned version of this paper see A000262.

Crossrefs

Programs

  • Mathematica
    mx = 16; p = 4; Range[0, mx]! CoefficientList[ Series[ Exp[ (Exp[p*x] - p - 1)/p + Exp[x]], {x, 0, mx}], x] (* Robert G. Wilson v, Dec 12 2012 *)
    Table[Sum[Binomial[n,k] * 4^k * BellB[k, 1/4] * BellB[n-k], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Jun 29 2022 *)
  • Maxima
    a(n):=sum(sum(binomial(m,i)*sum(binomial(i,j)*(1/4)^j*(3*j+i)^n,j,0,i)*(-5/4)^(m-i),i,0,m)/m!,m,1,n); /* Vladimir Kruchinin, Sep 14 2010 */

Formula

a(n) = sum(sum(binomial(m,i)*sum(binomial(i,j)*(1/4)^j*(3*j+i)^n,j,0,i)*(-5/4)^(m-i),i,0,m)/m!,m,1,n), n > 0. - Vladimir Kruchinin, Sep 14 2010
a(n) ~ exp(exp(p*r)/p + exp(r) - 1 - 1/p - n) * (n/r)^(n + 1/2) / sqrt((1 + p*r)*exp(p*r) + (1 + r)*exp(r)), where r = LambertW(p*n)/p - 1/(1 + p/LambertW(p*n) + n^(1 - 1/p) * (1 + LambertW(p*n)) * (p/LambertW(p*n))^(2 - 1/p)) for p=4. - Vaclav Kotesovec, Jul 03 2022
a(n) ~ (4*n/LambertW(4*n))^n * exp(n/LambertW(4*n) + (4*n/LambertW(4*n))^(1/4) - n - 5/4) / sqrt(1 + LambertW(4*n)). - Vaclav Kotesovec, Jul 10 2022

Extensions

Edited by N. J. A. Sloane, Jul 11 2008 at the suggestion of Franklin T. Adams-Watters

A294201 Irregular triangle read by rows: T(n,k) is the number of k-partitions of {1..3n} that are invariant under a permutation consisting of n 3-cycles (1 <= k <= 3n).

Original entry on oeis.org

1, 0, 1, 1, 1, 3, 2, 0, 1, 1, 3, 10, 12, 3, 9, 3, 0, 1, 1, 7, 33, 59, 30, 67, 42, 6, 18, 4, 0, 1, 1, 15, 106, 270, 216, 465, 420, 120, 235, 100, 10, 30, 5, 0, 1, 1, 31, 333, 1187, 1365, 3112, 3675, 1596, 2700, 1655, 330, 605, 195, 15, 45, 6, 0, 1
Offset: 1

Views

Author

Andrew Howroyd, Oct 24 2017

Keywords

Comments

T(n,k) = coefficient of x^k for A(3,n)(x) in Gilbert and Riordan's article. - Robert A. Russell, Jun 13 2018

Examples

			Triangle begins:
  1,  0,   1;
  1,  1,   3,   2,   0,   1;
  1,  3,  10,  12,   3,   9,   3,   0,   1;
  1,  7,  33,  59,  30,  67,  42,   6,  18,   4,  0,  1;
  1, 15, 106, 270, 216, 465, 420, 120, 235, 100, 10, 30, 5, 0, 1;
  ...
Case n=2: Without loss of generality the permutation of two 3-cycles can be taken as (123)(456). The second row is [1, 1, 3, 2, 0, 1] because the set partitions that are invariant under this permutation in increasing order of number of parts are {{1, 2, 3, 4, 5, 6}}; {{1, 2, 3}, {4, 5, 6}}; {{1, 4}, {2, 5}, {3, 6}}, {{1, 5}, {2, 6}, {3, 4}}, {{1, 6}, {2, 4}, {3, 5}}; {{1, 2, 3}, {4}, {5}, {6}}, {{1}, {2}, {3}, {4, 5, 6}}, {{1}, {2}, {3}, {4}, {5}, {6}}.
		

Crossrefs

Row sums are A002874.
Column k=3 gives A053156.
Maximum row values are A294202.
Unrelated to A002875.

Programs

  • Maple
    T:= proc(n, k) option remember; `if`([n, k]=[0, 0], 1, 0)+
         `if`(n>0 and k>0, k*T(n-1, k)+T(n-1, k-1)+T(n-1, k-3), 0)
        end:
    seq(seq(T(n, k), k=1..3*n), n=1..8);  # Alois P. Heinz, Sep 20 2019
  • Mathematica
    T[n_, k_] := T[n,k] = If[n>0 && k>0, k T[n-1,k] + T[n-1,k-1] + T[n-1,k-3], Boole[n==0 && k==0]] (* modification of Gilbert & Riordan recursion *)
    Table[T[n, k], {n,1,10}, {k,1,3n}] // Flatten (* Robert A. Russell, Jun 13 2018 *)
  • PARI
    \\ see A056391 for Polya enumeration functions
    T(n,k)={my(ci=PermCycleIndex(CylinderPerms(3,n)[2])); StructsByCycleIndex(ci,k) - if(k>1,StructsByCycleIndex(ci,k-1))}
    for (n=1, 6, for(k=1, 3*n, print1(T(n,k), ", ")); print);
    
  • PARI
    G(n)={Vec(-1+serlaplace(exp(sumdiv(3, d, y^d*(exp(d*x + O(x*x^n))-1)/d))))}
    { my(A=G(6)); for(n=1, #A, print(Vecrev(A[n]/y))) } \\ Andrew Howroyd, Sep 20 2019

Formula

T(n,k) = [n==0 & k==0] + [n>0 & k>0] * (k*T(n-1,k) + T(n-1,k-1) + T(n-1,k-3)). - Robert A. Russell, Jun 13 2018
T(n,k) = n!*[x^n*y^k] exp(Sum_{d|3} y^d*(exp(d*x) - 1)/d). - Andrew Howroyd, Sep 20 2019

A294202 The maximal number of partitions of {1..3n} that are invariant under a permutation consisting of n 3-cycles, and which have the same number of nonempty parts.

Original entry on oeis.org

1, 1, 3, 12, 67, 465, 3675, 30024, 299250, 3417690, 38983966, 446295630, 6494597538, 95113861987, 1365645758568, 20909896016688, 373941213111567, 6583031224561656, 114432377809889706, 2158725804226303597, 45003872172663258463, 928103099363098553160
Offset: 0

Views

Author

Andrew Howroyd, Oct 24 2017

Keywords

Crossrefs

Maximum row values of A294201.
Cf. A002873.

Programs

  • PARI
    G(n)={Vec(serlaplace(exp(sumdiv(3, d, y^d*(exp(d*x + O(x*x^n))-1)/d))))}
    seq(n)={my(A=G(n)); vector(#A, n, vecmax(Vec(A[n])))} \\ Andrew Howroyd, Sep 20 2019

Extensions

a(0)=1 prepended by Andrew Howroyd, Sep 20 2019

A036076 Expansion of e.g.f. exp((exp(p*x)-p-1)/p+exp(x)) for p=6.

Original entry on oeis.org

1, 2, 11, 87, 844, 9599, 125545, 1854234, 30407763, 546409567, 10654642428, 223763443039, 5030118977041, 120393730088818, 3054106291046267, 81792080931311015, 2304639285452820684, 68117438479292896255
Offset: 0

Views

Author

Keywords

References

  • T. S. Motzkin, Sorting numbers for cylinders and other classification numbers, in Combinatorics, Proc. Symp. Pure Math. 19, AMS, 1971, pp. 167-176.
  • T. S. Motzkin, Sorting numbers ...: for a link to an annotated scanned version of this paper see A000262.

Crossrefs

Programs

  • Maple
    egf:=  exp((exp(6*x)-6-1)/6+exp(x)):
    S:= series(egf,x,501):
    seq(coeff(S,x,i)*i!, i=0..20); # Robert Israel, Nov 27 2022
  • Mathematica
    mx = 16; p = 6; Range[0, mx]! CoefficientList[ Series[ Exp[ (Exp[p*x] - p - 1)/p + Exp[x]], {x, 0, mx}], x] (* Robert G. Wilson v, Dec 12 2012 *)
    Table[Sum[Binomial[n,k] * 6^k * BellB[k, 1/6] * BellB[n-k], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Jun 29 2022 *)

Formula

a(n) ~ exp(exp(p*r)/p + exp(r) - 1 - 1/p - n) * (n/r)^(n + 1/2) / sqrt((1 + p*r)*exp(p*r) + (1 + r)*exp(r)), where r = LambertW(p*n)/p - 1/(1 + p/LambertW(p*n) + n^(1 - 1/p) * (1 + LambertW(p*n)) * (p/LambertW(p*n))^(2 - 1/p)) for p=6. - Vaclav Kotesovec, Jul 03 2022
a(n) ~ (6*n/LambertW(6*n))^n * exp(n/LambertW(6*n) + (6*n/LambertW(6*n))^(1/6) - n - 7/6) / sqrt(1 + LambertW(6*n)). - Vaclav Kotesovec, Jul 10 2022

Extensions

Edited by N. J. A. Sloane, Jul 11 2008 at the suggestion of Franklin T. Adams-Watters.

A036081 The number of partitions of {1..(11n)} that are invariant under a permutation consisting of n 11-cycles.

Original entry on oeis.org

1, 2, 16, 202, 3044, 52794, 1055260, 24081754, 615896308, 17347970202, 531721375308, 17595339114554, 624882463734756, 23691503493287738, 954301756159098172, 40665568780962213530, 1826521141853468785364
Offset: 0

Views

Author

Keywords

Comments

Original name: Sorting numbers.

Crossrefs

Programs

  • Mathematica
    u[0, j_] := 1; u[k_, j_] := u[k, j] = Sum[Binomial[k-1, i-1]Plus@@(u[k-i, j]#^(i-1)&/@Divisors[j]), {i, k}]; Table[u[n, 11], {n, 0, 30}] (* Vincenzo Librandi, Dec 12 2012 - after Wouter Meeussen in similar sequences *)
    mx = 16; p = 11; Range[0, mx]! CoefficientList[ Series[ Exp[ (Exp[p*x] - p - 1)/p + Exp[x]], {x, 0, mx}], x] (* Robert G. Wilson v, Dec 12 2012 *)
    Table[Sum[Binomial[n,k] * 11^k * BellB[k, 1/11] * BellB[n-k], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Jun 29 2022 *)

Formula

E.g.f.: exp((exp(p*x)-p-1)/p+exp(x)) for p=11.
a(n) ~ exp(exp(p*r)/p + exp(r) - 1 - 1/p - n) * (n/r)^(n + 1/2) / sqrt((1 + p*r)*exp(p*r) + (1 + r)*exp(r)), where r = LambertW(p*n)/p - 1/(1 + p/LambertW(p*n) + n^(1 - 1/p) * (1 + LambertW(p*n)) * (p/LambertW(p*n))^(2 - 1/p)) for p=11. - Vaclav Kotesovec, Jul 03 2022
a(n) ~ (11*n/LambertW(11*n))^n * exp(n/LambertW(11*n) + (11*n/LambertW(11*n))^(1/11) - n - 12/11) / sqrt(1 + LambertW(11*n)). - Vaclav Kotesovec, Jul 10 2022

Extensions

New name from Danny Rorabaugh, Oct 24 2015

A036079 E.g.f.: exp((exp(p*x)-p-1)/p+exp(x)) for p=9.

Original entry on oeis.org

1, 2, 14, 150, 1942, 29174, 505318, 9957798, 219177942, 5303780758, 139554619206, 3962202725254, 120644298135478, 3918518255860342, 135117086088186662, 4925731652244913766, 189170325211554345366, 7629758975467859662678, 322296334808561664346886
Offset: 0

Views

Author

Keywords

References

  • T. S. Motzkin, Sorting numbers for cylinders and other classification numbers, in Combinatorics, Proc. Symp. Pure Math. 19, AMS, 1971, pp. 167-176.
  • T. S. Motzkin, Sorting numbers ...: for a link to an annotated scanned version of this paper see A000262.

Crossrefs

Programs

  • Mathematica
    mx = 16; p = 9; Range[0, mx]! CoefficientList[ Series[ Exp[ (Exp[p*x] - p - 1)/p + Exp[x]], {x, 0, mx}], x] (* Robert G. Wilson v, Dec 12 2012 *)
    Table[Sum[Binomial[n,k] * 9^k * BellB[k, 1/9] * BellB[n-k], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Jun 29 2022 *)

Formula

a(n) ~ exp(exp(p*r)/p + exp(r) - 1 - 1/p - n) * (n/r)^(n + 1/2) / sqrt((1 + p*r)*exp(p*r) + (1 + r)*exp(r)), where r = LambertW(p*n)/p - 1/(1 + p/LambertW(p*n) + n^(1 - 1/p) * (1 + LambertW(p*n)) * (p/LambertW(p*n))^(2 - 1/p)) for p=9. - Vaclav Kotesovec, Jul 03 2022
a(n) ~ (9*n/LambertW(9*n))^n * exp(n/LambertW(9*n) + (9*n/LambertW(9*n))^(1/9) - n - 10/9) / sqrt(1 + LambertW(9*n)). - Vaclav Kotesovec, Jul 10 2022

Extensions

Edited by N. J. A. Sloane, Jul 11 2008 at the suggestion of Franklin T. Adams-Watters.

A036080 E.g.f.: exp((exp(p*x)-p-1)/p+exp(x)) for p=10.

Original entry on oeis.org

1, 2, 15, 175, 2452, 39703, 741177, 15771270, 375485507, 9837064575, 280338965720, 8623355105347, 284589703065137, 10022926411599482, 374900187362983015, 14830483377507515247, 618219446355189917804, 27071966121397255354079, 1241912851303663452150377
Offset: 0

Views

Author

Keywords

References

  • T. S. Motzkin, Sorting numbers for cylinders and other classification numbers, in Combinatorics, Proc. Symp. Pure Math. 19, AMS, 1971, pp. 167-176.
  • T. S. Motzkin, Sorting numbers ...: for a link to an annotated scanned version of this paper see A000262.

Crossrefs

Programs

  • Mathematica
    mx = 16; p = 10; Range[0, mx]! CoefficientList[ Series[ Exp[ (Exp[p*x] - p - 1)/p + Exp[x]], {x, 0, mx}], x] (* Robert G. Wilson v, Dec 12 2012 *)
    Table[Sum[Binomial[n,k] * 10^k * BellB[k, 1/10] * BellB[n-k], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Jun 29 2022 *)

Formula

a(n) ~ exp(exp(p*r)/p + exp(r) - 1 - 1/p - n) * (n/r)^(n + 1/2) / sqrt((1 + p*r)*exp(p*r) + (1 + r)*exp(r)), where r = LambertW(p*n)/p - 1/(1 + p/LambertW(p*n) + n^(1 - 1/p) * (1 + LambertW(p*n)) * (p/LambertW(p*n))^(2 - 1/p)) for p=10. - Vaclav Kotesovec, Jul 03 2022
a(n) ~ (10*n/LambertW(10*n))^n * exp(n/LambertW(10*n) + (10*n/LambertW(10*n))^(1/10) - n - 11/10) / sqrt(1 + LambertW(10*n)). - Vaclav Kotesovec, Jul 10 2022

Extensions

Edited by N. J. A. Sloane, Jul 11 2008 at the suggestion of Franklin T. Adams-Watters.
Showing 1-10 of 11 results. Next