cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A152175 Triangle read by rows: T(n,k) is the number of k-block partitions of an n-set up to rotations.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 3, 5, 2, 1, 1, 7, 18, 13, 3, 1, 1, 9, 43, 50, 20, 3, 1, 1, 19, 126, 221, 136, 36, 4, 1, 1, 29, 339, 866, 773, 296, 52, 4, 1, 1, 55, 946, 3437, 4281, 2303, 596, 78, 5, 1, 1, 93, 2591, 13250, 22430, 16317, 5817, 1080, 105, 5, 1, 1, 179, 7254, 51075, 115100, 110462, 52376, 13299, 1873, 147, 6, 1
Offset: 1

Views

Author

Vladeta Jovovic, Nov 27 2008

Keywords

Comments

Number of n-bead necklace structures using exactly k different colored beads. Turning over the necklace is not allowed. Permuting the colors does not change the structure. - Andrew Howroyd, Apr 06 2017

Examples

			Triangle begins with T(1,1):
  1;
  1,   1;
  1,   1,     1;
  1,   3,     2,      1;
  1,   3,     5,      2,      1;
  1,   7,    18,     13,      3,      1;
  1,   9,    43,     50,     20,      3,      1;
  1,  19,   126,    221,    136,     36,      4,      1;
  1,  29,   339,    866,    773,    296,     52,      4,     1;
  1,  55,   946,   3437,   4281,   2303,    596,     78,     5,    1;
  1,  93,  2591,  13250,  22430,  16317,   5817,   1080,   105   , 5,   1;
  1, 179,  7254,  51075, 115100, 110462,  52376,  13299,  1873,  147,   6, 1;
  1, 315, 20125, 194810, 577577, 717024, 439648, 146124, 27654, 3025, 187, 6, 1;
  ...
For T(4,2)=3, the set partitions are AAAB, AABB, and ABAB.
For T(4,3)=2, the set partitions are AABC and ABAC.
		

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Columns 2-6 are A056295, A056296, A056297, A056298, A056299.
Row sums are A084423.
Partial row sums include A000013, A002076, A056292, A056293, A056294.
Cf. A075195, A087854, A008277 (set partitions), A284949 (up to reflection), A152176 (up to rotation and reflection).
A(1,n,k) in formula is the Stirling subset number A008277.
A(2,n,k) in formula is A293181; A(3,n,k) in formula is A294201.

Programs

  • Mathematica
    (* Using recursion formula from Gilbert and Riordan:*)
    Adn[d_, n_] := Adn[d, n] = Which[0==n, 1, 1==n, DivisorSum[d, x^# &],
      1==d, Sum[StirlingS2[n, k] x^k, {k, 0, n}],
      True, Expand[Adn[d, 1] Adn[d, n-1] + D[Adn[d, n - 1], x] x]];
    Table[CoefficientList[DivisorSum[n, EulerPhi[#] Adn[#, n/#] &]/(x n), x],
       {n, 1, 10}] // Flatten (* Robert A. Russell, Feb 23 2018 *)
    Adnk[d_,n_,k_] := Adnk[d,n,k] = If[n>0 && k>0, Adnk[d,n-1,k]k + DivisorSum[d,Adnk[d,n-1,k-#] &], Boole[n==0 && k==0]]
    Table[DivisorSum[n,EulerPhi[#]Adnk[#,n/#,k]&]/n,{n,1,12},{k,1,n}] // Flatten (* Robert A. Russell, Oct 16 2018 *)
  • PARI
    \\ see A056391 for Polya enumeration functions
    T(n,k) = NonequivalentStructsExactly(CyclicPerms(n), k); \\ Andrew Howroyd, Oct 14 2017
    
  • PARI
    R(n) = {Mat(Col([Vecrev(p/y, n) | p<-Vec(intformal(sum(m=1, n, eulerphi(m) * subst(serlaplace(-1 + exp(sumdiv(m, d, y^d*(exp(d*x + O(x*x^(n\m)))-1)/d))), x, x^m))/x))]))}
    { my(A=R(12)); for(n=1, #A, print(A[n, 1..n])) } \\ Andrew Howroyd, Sep 20 2019

Formula

T(n,k) = (1/n)*Sum_{d|n} phi(d)*A(d,n/d,k), where A(d,n,k) = [n==0 & k==0] + [n>0 & k>0]*(k*A(d,n-1,k) + Sum_{j|d} A(d,n-1,k-j)). - Robert A. Russell, Oct 16 2018

A002874 The number of partitions of {1..3n} that are invariant under a permutation consisting of n 3-cycles.

Original entry on oeis.org

1, 2, 8, 42, 268, 1994, 16852, 158778, 1644732, 18532810, 225256740, 2933174842, 40687193548, 598352302474, 9290859275060, 151779798262202, 2600663778494172, 46609915810749130, 871645673599372868, 16971639450858467002, 343382806080459389676
Offset: 0

Views

Author

Keywords

Comments

Original name: Sorting numbers.

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

u[n,j] generates for j=1, A000110; j=2, A002872; j=3, this sequence; j=4, A141003; j=5, A036075; j=6, A141004; j=7, A036077. - Wouter Meeussen, Dec 06 2008
Equals column 3 of A162663. - Michel Marcus, Mar 27 2013
Row sums of A294201.

Programs

  • Maple
    S:= series(exp( (exp(3*x) - 4)/3 + exp(x)), x, 31):
    seq(coeff(S,x,j)*j!, j=0..30); # Robert Israel, Oct 30 2015
    # second Maple program:
    a:= proc(n) option remember; `if`(n=0, 1, add((1+
          3^(j-1))*binomial(n-1, j-1)*a(n-j), j=1..n))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Oct 17 2017
  • Mathematica
    u[0,j_]:=1;u[k_,j_]:=u[k,j]=Sum[Binomial[k-1,i-1]Plus@@(u[k-i,j]#^(i-1)&/@Divisors[j]),{i,k}]; Table[u[n,3],{n,0,12}] (* Wouter Meeussen, Dec 06 2008 *)
    mx = 16; p = 3; Range[0, mx]! CoefficientList[ Series[ Exp[ (Exp[p*x] - p - 1)/p + Exp[x]], {x, 0, mx}], x] (* Robert G. Wilson v, Dec 12 2012 *)
    Table[Sum[Binomial[n,k] * 3^k * BellB[k, 1/3] * BellB[n-k], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Jun 29 2022 *)

Formula

E.g.f.: exp( (exp(3*x) - 4)/3 + exp(x) ).
a(n) ~ exp(exp(3*r)/3 + exp(r) - 4/3 - n) * (n/r)^(n + 1/2) / sqrt((1 + 3*r)*exp(3*r) + (1 + r)*exp(r)), where r = LambertW(3*n)/3 - 1/(1 + 3/LambertW(3*n) + n^(2/3) * (1 + LambertW(3*n)) * (3/LambertW(3*n))^(5/3)). - Vaclav Kotesovec, Jul 03 2022
a(n) ~ (3*n/LambertW(3*n))^n * exp(n/LambertW(3*n) + (3*n/LambertW(3*n))^(1/3) - n - 4/3) / sqrt(1 + LambertW(3*n)). - Vaclav Kotesovec, Jul 10 2022

Extensions

New name from Danny Rorabaugh, Oct 24 2015

A002875 Sorting numbers (see Motzkin article for details).

Original entry on oeis.org

1, 2, 4, 24, 128, 880, 7440
Offset: 0

Views

Author

Keywords

Comments

How is the sequence defined (see the links in A000262)? Also more terms would be welcome.
Based on the Motzkin article, where this sequence appears in the last row of the table on p. 173, one would expect that this sequence is the same as A294202. However, they seem to be unrelated. So the true definition of this sequence is a mystery. - Andrew Howroyd and Andrey Zabolotskiy, Oct 25 2017

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A053156 Number of 2-element intersecting families (with not necessarily distinct sets) whose union is an n-element set.

Original entry on oeis.org

1, 3, 10, 33, 106, 333, 1030, 3153, 9586, 29013, 87550, 263673, 793066, 2383293, 7158070, 21490593, 64504546, 193579173, 580868590, 1742867913, 5229128026, 15688432653, 47067395110, 141206379633, 423627527506, 1270899359733
Offset: 1

Views

Author

Vladeta Jovovic and Goran Kilibarda, Feb 28 2000

Keywords

Comments

Let P(A) be the power set of an n-element set A. Then a(n+1) = the number of pairs of elements {x,y} of P(A) for which either 0) x and y are disjoint and for which either x is a subset of y or y is a subset of x, or 1) x and y are disjoint and for which x is not a subset of y and y is not a subset of x, or 2) x and y are intersecting and for which either x is a proper subset of y or y is a proper subset of x, or 3) x = y. - Ross La Haye, Jan 12 2008
From Paul Barry, Apr 27 2003: (Start)
With offset 0, this is a(n) = (3*3^n - 2*2^n + 1)/2.
G.f. (1-3*x+3*x^2)/((1-x)*(1-2*x)*(1-3*x)).
E.g.f. (3*exp(3*x) - 2*exp(2*x) + exp(x))/2.
Binomial transform of A083329.
Second binomial transform of A040001. (End)

Crossrefs

Cf. A036239.
Column k=2 of A288638.
Third column of A294201.

Programs

  • Magma
    [(3^n-2^n+1)/2: n in [1..30]]; // G. C. Greubel, Oct 06 2017
  • Maple
    A053156:=n->(3^n - 2^n + 1)/2: seq(A053156(n), n=1..40); # Wesley Ivan Hurt, Oct 06 2017
  • Mathematica
    LinearRecurrence[{6,-11,6}, {1, 3, 10}, 50] (* or *) Table[(3^n - 2^n + 1)/2, {n,1,50}] (* G. C. Greubel, Oct 06 2017 *)
  • PARI
    a(n) = (3^n-2^n+1)/2; \\ Michel Marcus, Nov 30 2015
    

Formula

a(n) = (3^n - 2^n + 1)/2.
a(n) = StirlingS2(n+2,3) + StirlingS2(n+1,2) + 1. - Ross La Haye, Jan 12 2008
From Colin Barker, Jul 29 2012: (Start)
a(n) = 6*a(n-1) - 11*a(n-2) + 6*a(n-3) for n > 3.
G.f.: x*(1-3*x+3*x^2)/((1-x)*(1-2*x)*(1-3*x)). (End)

A294202 The maximal number of partitions of {1..3n} that are invariant under a permutation consisting of n 3-cycles, and which have the same number of nonempty parts.

Original entry on oeis.org

1, 1, 3, 12, 67, 465, 3675, 30024, 299250, 3417690, 38983966, 446295630, 6494597538, 95113861987, 1365645758568, 20909896016688, 373941213111567, 6583031224561656, 114432377809889706, 2158725804226303597, 45003872172663258463, 928103099363098553160
Offset: 0

Views

Author

Andrew Howroyd, Oct 24 2017

Keywords

Crossrefs

Maximum row values of A294201.
Cf. A002873.

Programs

  • PARI
    G(n)={Vec(serlaplace(exp(sumdiv(3, d, y^d*(exp(d*x + O(x*x^n))-1)/d))))}
    seq(n)={my(A=G(n)); vector(#A, n, vecmax(Vec(A[n])))} \\ Andrew Howroyd, Sep 20 2019

Extensions

a(0)=1 prepended by Andrew Howroyd, Sep 20 2019
Showing 1-5 of 5 results.