cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A001861 Expansion of e.g.f. exp(2*(exp(x) - 1)).

Original entry on oeis.org

1, 2, 6, 22, 94, 454, 2430, 14214, 89918, 610182, 4412798, 33827974, 273646526, 2326980998, 20732504062, 192982729350, 1871953992254, 18880288847750, 197601208474238, 2142184050841734, 24016181943732414, 278028611833689478, 3319156078802044158, 40811417293301014150
Offset: 0

Views

Author

Keywords

Comments

Values of Bell polynomials: ways of placing n labeled balls into n unlabeled (but 2-colored) boxes.
First column of the square of the matrix exp(P)/exp(1) given in A011971. - Gottfried Helms, Mar 30 2007
Base matrix in A011971, second power in A078937, third power in A078938, fourth power in A078939. - Gottfried Helms, Apr 08 2007
Equals row sums of triangle A144061. - Gary W. Adamson, Sep 09 2008
Equals eigensequence of triangle A109128. - Gary W. Adamson, Apr 17 2009
Hankel transform is A108400. - Paul Barry, Apr 29 2009
The number of ways of putting n labeled balls into a set of bags and then putting the bags into 2 labeled boxes. An example is given below. - Peter Bala, Mar 23 2013
The f-vectors of n-dimensional hypercube are given by A038207 = exp[M*B(.,2)] = exp[M*A001861(.)] where M = A238385-I and (B(.,x))^n = B(n,x) are the Bell polynomials (cf. A008277). - Tom Copeland, Apr 17 2014
Moments of the Poisson distribution with mean 2. - Vladimir Reshetnikov, May 17 2016
Exponential self-convolution of Bell numbers (A000110). - Vladimir Reshetnikov, Oct 06 2016

Examples

			a(2) = 6: The six ways of putting 2 balls into bags (denoted by { }) and then into 2 labeled boxes (denoted by [ ]) are
01: [{1,2}] [ ];
02: [ ] [{1,2}];
03: [{1}] [{2}];
04: [{2}] [{1}];
05: [{1} {2}] [ ];
06: [ ] [{1} {2}].
- _Peter Bala_, Mar 23 2013
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

For boxes of 1 color, see A000110, for 3 colors see A027710, for 4 colors see A078944, for 5 colors see A144180, for 6 colors see A144223, for 7 colors see A144263, for 8 colors see A221159.
First column of A078937.
Equals 2*A035009(n), n>0.
Row sums of A033306, A036073, A049020, and A144061.

Programs

  • Magma
    [&+[2^k*StirlingSecond(n, k): k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, May 18 2019
  • Maple
    A001861:=n->add(Stirling2(n,k)*2^k, k=0..n); seq(A001861(n), n=0..20); # Wesley Ivan Hurt, Apr 18 2014
    # second Maple program:
    b:= proc(n, m) option remember;
         `if`(n=0, 2^m, m*b(n-1, m)+b(n-1, m+1))
        end:
    a:= n-> b(n, 0):
    seq(a(n), n=0..25);  # Alois P. Heinz, Aug 04 2021
  • Mathematica
    Table[Sum[StirlingS2[n, k]*2^k, {k, 0, n}], {n, 0, 21}] (* Geoffrey Critzer, Oct 06 2009 *)
    mx = 16; p = 1; Range[0, mx]! CoefficientList[ Series[ Exp[ (Exp[p*x] - p - 1)/p + Exp[x]], {x, 0, mx}], x] (* Robert G. Wilson v, Dec 12 2012 *)
    Table[BellB[n, 2], {n, 0, 20}] (* Vaclav Kotesovec, Jan 06 2013 *)
  • PARI
    a(n)=if(n<0,0,n!*polcoeff(exp(2*(exp(x+x*O(x^n))-1)),n))
    
  • PARI
    {a(n)=polcoeff(sum(m=0, n, 2^m*x^m/prod(k=1,m,1-k*x +x*O(x^n))), n)} /* Paul D. Hanna, Feb 15 2012 */
    
  • PARI
    {a(n) = sum(k=0, n, 2^k*stirling(n, k, 2))} \\ Seiichi Manyama, Jul 28 2019
    
  • Sage
    expnums(30, 2) # Zerinvary Lajos, Jun 26 2008
    

Formula

a(n) = Sum_{k=0..n} 2^k*Stirling2(n, k). - Emeric Deutsch, Oct 20 2001
a(n) = exp(-2)*Sum_{k>=1} 2^k*k^n/k!. - Benoit Cloitre, Sep 25 2003
G.f. satisfies 2*(x/(1-x))*A(x/(1-x)) = A(x) - 1; twice the binomial transform equals the sequence shifted one place left. - Paul D. Hanna, Dec 08 2003
PE = exp(matpascal(5)-matid(6)); A = PE^2; a(n)=A[n,1]. - Gottfried Helms, Apr 08 2007
G.f.: 1/(1-2x-2x^2/(1-3x-4x^2/(1-4x-6x^2/(1-5x-8x^2/(1-6x-10x^2/(1-... (continued fraction). - Paul Barry, Apr 29 2009
O.g.f.: Sum_{n>=0} 2^n*x^n / Product_{k=1..n} (1-k*x). - Paul D. Hanna, Feb 15 2012
a(n) ~ exp(-2-n+n/LambertW(n/2))*n^n/LambertW(n/2)^(n+1/2). - Vaclav Kotesovec, Jan 06 2013
G.f.: (G(0) - 1)/(x-1)/2 where G(k) = 1 - 2/(1-k*x)/(1-x/(x-1/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jan 16 2013
G.f.: 1/Q(0) where Q(k) = 1 + x*k - x - x/(1 - 2*x*(k+1)/Q(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Mar 07 2013
G.f.: ((1+x)/Q(0)-1)/(2*x), where Q(k) = 1 - (k+1)*x - 2*(k+1)*x^2/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 03 2013
G.f.: T(0)/(1-2*x), where T(k) = 1 - 2*x^2*(k+1)/( 2*x^2*(k+1) - (1-2*x-x*k)*(1-3*x-x*k)/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Oct 24 2013
a(n) = Sum_{k=0..n} A033306(n,k) = Sum_{k=0..n} binomial(n,k)*Bell(k)*Bell(n-k), where Bell = A000110 (see Motzkin, p. 170). - Danny Rorabaugh, Oct 18 2015
a(0) = 1 and a(n) = 2 * Sum_{k=0..n-1} binomial(n-1,k)*a(k) for n > 0. - Seiichi Manyama, Sep 25 2017 [corrected by Ilya Gutkovskiy, Jul 12 2020]

A162663 Table by antidiagonals, T(n,k) is the number of partitions of {1..(nk)} that are invariant under a permutation consisting of n k-cycles.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 2, 7, 5, 1, 3, 8, 31, 15, 1, 2, 16, 42, 164, 52, 1, 4, 10, 111, 268, 999, 203, 1, 2, 28, 70, 931, 1994, 6841, 877, 1, 4, 12, 258, 602, 9066, 16852, 51790, 4140, 1, 3, 31, 106, 2892, 6078, 99925, 158778, 428131, 21147, 1, 4, 22, 329, 1144, 37778, 70402, 1224579, 1644732, 3827967, 115975
Offset: 0

Views

Author

Keywords

Comments

The upper left corner of the array is T(0,1).
Without loss of generality, the permutation can be taken to be (1 2 ... k) (k+1 k+2 ... 2k) ... ((n-1)k+1 (n-1)k+2 ... nk).
Note that it is the partition that is invariant, not the individual parts. Thus for n=k=2 with permutation (1 2)(3 4), the partition 1,3|2,4 is counted; it maps to 2,4|1,3, which is the same partition.

Examples

			The table starts:
   1,   1,   1,   1,   1
   1,   2,   2,   3,   2
   2,   7,   8,  16,  10
   5,  31,  42, 111,  70
  15, 164, 268, 931, 602
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    A:= proc(n, k) option remember; `if`(n=0, 1, add(binomial(n-1, j-1)
           *add(d^(j-1), d=divisors(k))*A(n-j, k), j=1..n))
        end:
    seq(seq(A(n, 1+d-n), n=0..d), d=0..12);  # Alois P. Heinz, Oct 29 2015
  • Mathematica
    max = 11; ClearAll[col]; col[k_] := col[k] =  CoefficientList[ Series[ Exp[ Sum[ (Exp[d*x] - 1)/d, {d, Divisors[k]}]], {x, 0, max}], x]*Range[0, max]!; t[n_, k_] := col[k][[n]]; Flatten[ Table[ t[n-k+1, k], {n, 1, max}, {k, n, 1, -1}] ] (* Jean-François Alcover, Aug 08 2012, after e.g.f. *)
  • PARI
    amat(n,m)=local(r);r=matrix(n,m,i,j,1);for(k=1,n-1,for(j=1,m,r[k+1,j]=sum (i=1,k,binomial(k-1,i-1)*sumdiv(j,d,r[k-i+1,j]*d^(i-1)))));r
    acol(n,k)=local(fn);fn=exp(sumdiv(k,d,(exp(d*x+x*O(x^n))-1)/d));vector(n+ 1,i,polcoeff(fn,i-1)*(i-1)!)

Formula

E.g.f. for column k: exp(Sum_{d|k} (exp(d*x) - 1) / d).
Equivalently, column k is the exponential transform of a(n) = Sum_{d|k} d^(n-1); this represents a set of n k-cycles, each repeating the same d elements (parts), but starting in different places.
T(n,k) = Sum_{P a partition of n} SP(P) * Product_( (sigma_{i-1}(k))^(P(i)-1) ), where SP is A036040 or A080575, and P(i) is the number of parts in P of size i.
T(n,k) = Sum_{j=0..n-1} A036073(n,j)*k^(n-1-j). - Andrey Zabolotskiy, Oct 22 2017

Extensions

Offset set to 0 by Alois P. Heinz, Oct 29 2015

A002875 Sorting numbers (see Motzkin article for details).

Original entry on oeis.org

1, 2, 4, 24, 128, 880, 7440
Offset: 0

Views

Author

Keywords

Comments

How is the sequence defined (see the links in A000262)? Also more terms would be welcome.
Based on the Motzkin article, where this sequence appears in the last row of the table on p. 173, one would expect that this sequence is the same as A294202. However, they seem to be unrelated. So the true definition of this sequence is a mystery. - Andrew Howroyd and Andrey Zabolotskiy, Oct 25 2017

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Showing 1-3 of 3 results.