A306024 Number A(n,k) of length-n restricted growth strings (RGS) with growth <= k and first element in [k]; square array A(n,k), n>=0, k>=0, read by antidiagonals.
1, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 7, 5, 0, 1, 4, 15, 31, 15, 0, 1, 5, 26, 95, 164, 52, 0, 1, 6, 40, 214, 717, 999, 203, 0, 1, 7, 57, 405, 2096, 6221, 6841, 877, 0, 1, 8, 77, 685, 4875, 23578, 60619, 51790, 4140, 0, 1, 9, 100, 1071, 9780, 67354, 297692, 652595, 428131, 21147, 0
Offset: 0
A305968 Number of length-n restricted growth strings (RGS) with growth <= eight and fixed first element.
1, 1, 9, 117, 1905, 36585, 802221, 19664325, 530764089, 15596609985, 494555435781, 16802009359677, 608027982857169, 23322183958778553, 944242763282027421, 40207158379868421429, 1795007963258388557673, 83786699444454149125041, 4079132811705470375924277
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..414
Programs
-
Maple
b:= proc(n, m) option remember; `if`(n=0, 1, add(b(n-1, max(m, j)), j=1..m+8)) end: a:= n-> b(n, -7): seq(a(n), n=0..25); # second Maple program: a:= n-> `if`(n=0, 1, (n-1)!*coeff(series(exp(x+add( (exp(j*x)-1)/j, j=1..8)), x, n), x, n-1)): seq(a(n), n=0..25);
Formula
a(n) = (n-1)! * [x^(n-1)] exp(x+Sum_{j=1..8} (exp(j*x)-1)/j) for n>0, a(0) = 1.
Comments
Examples
Links
Crossrefs
Programs
Maple
Mathematica
Formula