A305962 Number A(n,k) of length-n restricted growth strings (RGS) with growth <= k and fixed first element; square array A(n,k), n>=0, k>=0, read by antidiagonals.
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 5, 1, 1, 1, 4, 12, 15, 1, 1, 1, 5, 22, 59, 52, 1, 1, 1, 6, 35, 150, 339, 203, 1, 1, 1, 7, 51, 305, 1200, 2210, 877, 1, 1, 1, 8, 70, 541, 3125, 10922, 16033, 4140, 1, 1, 1, 9, 92, 875, 6756, 36479, 110844, 127643, 21147, 1
Offset: 0
A306032 Number of length-n restricted growth strings (RGS) with growth <= eight and first element in [8].
1, 8, 100, 1580, 29632, 637220, 15363376, 408744260, 11858631472, 371738275844, 12498545568496, 447999414313412, 17033296095318832, 684009592157461508, 28904630032314771184, 1281216363971401581764, 59402574686629293902896, 2873649326399265142739972
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..413
Programs
-
Maple
b:= proc(n, m) option remember; `if`(n=0, 1, add(b(n-1, max(m, j)), j=1..m+8)) end: a:= n-> b(n, 0): seq(a(n), n=0..25); # second Maple program: a:= n-> n!*coeff(series(exp(add((exp(j*x)-1)/j, j=1..8)), x, n+1), x, n): seq(a(n), n=0..25);
Formula
E.g.f.: exp(Sum_{j=1..8} (exp(j*x)-1)/j).
Comments
Examples
Links
Crossrefs
Programs
Maple
Mathematica
Formula