A306024 Number A(n,k) of length-n restricted growth strings (RGS) with growth <= k and first element in [k]; square array A(n,k), n>=0, k>=0, read by antidiagonals.
1, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 7, 5, 0, 1, 4, 15, 31, 15, 0, 1, 5, 26, 95, 164, 52, 0, 1, 6, 40, 214, 717, 999, 203, 0, 1, 7, 57, 405, 2096, 6221, 6841, 877, 0, 1, 8, 77, 685, 4875, 23578, 60619, 51790, 4140, 0, 1, 9, 100, 1071, 9780, 67354, 297692, 652595, 428131, 21147, 0
Offset: 0
A305967 Number of length-n restricted growth strings (RGS) with growth <= seven and fixed first element.
1, 1, 8, 92, 1324, 22464, 435044, 9416240, 224382116, 5820361008, 162900823428, 4884515258224, 155992931417316, 5280138035455024, 188639017788288836, 7087660960768335472, 279189959071013966500, 11498108706476961892400, 493881446025566760548100
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..422
Programs
-
Maple
b:= proc(n, m) option remember; `if`(n=0, 1, add(b(n-1, max(m, j)), j=1..m+7)) end: a:= n-> b(n, -6): seq(a(n), n=0..25); # second Maple program: a:= n-> `if`(n=0, 1, (n-1)!*coeff(series(exp(x+add( (exp(j*x)-1)/j, j=1..7)), x, n), x, n-1)): seq(a(n), n=0..25);
Formula
a(n) = (n-1)! * [x^(n-1)] exp(x+Sum_{j=1..7} (exp(j*x)-1)/j) for n>0, a(0) = 1.
Comments
Examples
Links
Crossrefs
Programs
Maple
Mathematica
Formula