A306024 Number A(n,k) of length-n restricted growth strings (RGS) with growth <= k and first element in [k]; square array A(n,k), n>=0, k>=0, read by antidiagonals.
1, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 7, 5, 0, 1, 4, 15, 31, 15, 0, 1, 5, 26, 95, 164, 52, 0, 1, 6, 40, 214, 717, 999, 203, 0, 1, 7, 57, 405, 2096, 6221, 6841, 877, 0, 1, 8, 77, 685, 4875, 23578, 60619, 51790, 4140, 0, 1, 9, 100, 1071, 9780, 67354, 297692, 652595, 428131, 21147, 0
Offset: 0
A305965 Number of length-n restricted growth strings (RGS) with growth <= five and fixed first element.
1, 1, 6, 51, 541, 6756, 96205, 1530025, 26775550, 509861195, 10472109149, 230368347780, 5396308081285, 133949699318945, 3508794554854054, 96648143868171171, 2790590111082279405, 84231759174460743700, 2651416546964399982909, 86848041397350751409257
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..444
Programs
-
Maple
b:= proc(n, m) option remember; `if`(n=0, 1, add(b(n-1, max(m, j)), j=1..m+5)) end: a:= n-> b(n, -4): seq(a(n), n=0..25); # second Maple program: a:= n-> `if`(n=0, 1, (n-1)!*coeff(series(exp(x+add( (exp(j*x)-1)/j, j=1..5)), x, n), x, n-1)): seq(a(n), n=0..25);
Formula
a(n) = (n-1)! * [x^(n-1)] exp(x+Sum_{j=1..5} (exp(j*x)-1)/j) for n>0, a(0) = 1.
Comments
Examples
Links
Crossrefs
Programs
Maple
Mathematica
Formula