A306024 Number A(n,k) of length-n restricted growth strings (RGS) with growth <= k and first element in [k]; square array A(n,k), n>=0, k>=0, read by antidiagonals.
1, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 7, 5, 0, 1, 4, 15, 31, 15, 0, 1, 5, 26, 95, 164, 52, 0, 1, 6, 40, 214, 717, 999, 203, 0, 1, 7, 57, 405, 2096, 6221, 6841, 877, 0, 1, 8, 77, 685, 4875, 23578, 60619, 51790, 4140, 0, 1, 9, 100, 1071, 9780, 67354, 297692, 652595, 428131, 21147, 0
Offset: 0
A305966 Number of length-n restricted growth strings (RGS) with growth <= six and fixed first element.
1, 1, 7, 70, 875, 12887, 216552, 4065775, 84022595, 1889844292, 45857269017, 1191971998455, 32996489835190, 968034453578997, 29972909437783507, 975944207096597110, 33313664777283768535, 1188852507118147925627, 44246989258071738375272, 1713739685432232160181115
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..432
Programs
-
Maple
b:= proc(n, m) option remember; `if`(n=0, 1, add(b(n-1, max(m, j)), j=1..m+6)) end: a:= n-> b(n, -5): seq(a(n), n=0..25); # second Maple program: a:= n-> `if`(n=0, 1, (n-1)!*coeff(series(exp(x+add( (exp(j*x)-1)/j, j=1..6)), x, n), x, n-1)): seq(a(n), n=0..25);
Formula
a(n) = (n-1)! * [x^(n-1)] exp(x+Sum_{j=1..6} (exp(j*x)-1)/j) for n>0, a(0) = 1.
Comments
Examples
Links
Crossrefs
Programs
Maple
Mathematica
Formula