A305962 Number A(n,k) of length-n restricted growth strings (RGS) with growth <= k and fixed first element; square array A(n,k), n>=0, k>=0, read by antidiagonals.
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 5, 1, 1, 1, 4, 12, 15, 1, 1, 1, 5, 22, 59, 52, 1, 1, 1, 6, 35, 150, 339, 203, 1, 1, 1, 7, 51, 305, 1200, 2210, 877, 1, 1, 1, 8, 70, 541, 3125, 10922, 16033, 4140, 1, 1, 1, 9, 92, 875, 6756, 36479, 110844, 127643, 21147, 1
Offset: 0
A306030 Number of length-n restricted growth strings (RGS) with growth <= six and first element in [6].
1, 6, 57, 685, 9780, 160201, 2943277, 59687920, 1320233315, 31557691541, 809161436022, 22121068343155, 641530646758325, 19651776950222806, 633510644286624717, 21422880077590022265, 757789084383273607060, 27969244566731240796621, 1074750913823536151018737
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..431
Programs
-
Maple
b:= proc(n, m) option remember; `if`(n=0, 1, add(b(n-1, max(m, j)), j=1..m+6)) end: a:= n-> b(n, 0): seq(a(n), n=0..25); # second Maple program: a:= n-> n!*coeff(series(exp(add((exp(j*x)-1)/j, j=1..6)), x, n+1), x, n): seq(a(n), n=0..25);
Formula
E.g.f.: exp(Sum_{j=1..6} (exp(j*x)-1)/j).
Comments
Examples
Links
Crossrefs
Programs
Maple
Mathematica
Formula