A306024 Number A(n,k) of length-n restricted growth strings (RGS) with growth <= k and first element in [k]; square array A(n,k), n>=0, k>=0, read by antidiagonals.
1, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 7, 5, 0, 1, 4, 15, 31, 15, 0, 1, 5, 26, 95, 164, 52, 0, 1, 6, 40, 214, 717, 999, 203, 0, 1, 7, 57, 405, 2096, 6221, 6841, 877, 0, 1, 8, 77, 685, 4875, 23578, 60619, 51790, 4140, 0, 1, 9, 100, 1071, 9780, 67354, 297692, 652595, 428131, 21147, 0
Offset: 0
A305971 Antidiagonal sums of A305962.
1, 2, 3, 5, 11, 34, 141, 736, 4653, 34842, 303848, 3041514, 34520903, 439820187, 6238591638, 97832195694, 1685800545944, 31746373299029, 650170193047230, 14418116545259245, 344857160229381442, 8865220175506008295, 244158955254595904415, 7183277314615065192163
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..200
Programs
-
Maple
b:= proc(n, k, m) option remember; `if`(n=0, 1, add(b(n-1, k, max(m, j)), j=1..m+k)) end: a:= n-> add(b(j, n-j, 1+j-n), j=0..n): seq(a(n), n=0..25); # second Maple program: b:= (n, k)-> `if`(n=0, 1, (n-1)!*coeff(series(exp(x+add( (exp(j*x)-1)/j, j=1..k)), x, n), x, n-1)): a:= n-> add(b(j, n-j), j=0..n): seq(a(n), n=0..25);
-
Mathematica
b[n_, k_, m_] := b[n, k, m] = If[n == 0, 1, Sum[b[n - 1, k, Max[m, j]], {j, 1, m + k}]]; a[n_] := Sum[b[j, n - j, 1 + j - n], {j, 0, n}]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Nov 16 2022, after Alois P. Heinz *)
Formula
a(n) = Sum_{j=0..n} (j-1)! * [x^(j-1)] exp(x + Sum_{i=1..n-j} (exp(i*x)-1)/i) for n > 0, a(0) = 1.
a(n) = Sum_{j=0..n} A305962(j,n-j).
Comments
Examples
Links
Crossrefs
Programs
Maple
Mathematica
Formula