A305962 Number A(n,k) of length-n restricted growth strings (RGS) with growth <= k and fixed first element; square array A(n,k), n>=0, k>=0, read by antidiagonals.
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 5, 1, 1, 1, 4, 12, 15, 1, 1, 1, 5, 22, 59, 52, 1, 1, 1, 6, 35, 150, 339, 203, 1, 1, 1, 7, 51, 305, 1200, 2210, 877, 1, 1, 1, 8, 70, 541, 3125, 10922, 16033, 4140, 1, 1, 1, 9, 92, 875, 6756, 36479, 110844, 127643, 21147, 1
Offset: 0
A306026 Antidiagonal sums of A306024.
1, 1, 2, 5, 16, 66, 343, 2180, 16505, 145773, 1477880, 16986349, 219158316, 3147962668, 49982588535, 871766923048, 16609804758449, 344016348602845, 7711752589539436, 186379711851775401, 4839449174872615116, 134575228738532130948, 3996183953610068510929
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..200
Programs
-
Maple
b:= proc(n, k, m) option remember; `if`(n=0, 1, add(b(n-1, k, max(m, j)), j=1..m+k)) end: a:= n-> add(b(j, n-j, 0), j=0..n): seq(a(n), n=0..25); # second Maple program: b:= (n, k)-> n!*coeff(series(exp(add((exp(j*x)-1)/j, j=1..k)), x, n+1), x, n): a:= n-> add(b(j, n-j), j=0..n): seq(a(n), n=0..25);
Formula
a(n) = Sum_{j=0..n} j! * [x^j] exp(Sum_{i=1..n-j} (exp(i*x)-1)/i).
a(n) = Sum_{j=0..n} A306024(j,n-j).
Comments
Examples
Links
Crossrefs
Programs
Maple
Mathematica
Formula