A305962 Number A(n,k) of length-n restricted growth strings (RGS) with growth <= k and fixed first element; square array A(n,k), n>=0, k>=0, read by antidiagonals.
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 5, 1, 1, 1, 4, 12, 15, 1, 1, 1, 5, 22, 59, 52, 1, 1, 1, 6, 35, 150, 339, 203, 1, 1, 1, 7, 51, 305, 1200, 2210, 877, 1, 1, 1, 8, 70, 541, 3125, 10922, 16033, 4140, 1, 1, 1, 9, 92, 875, 6756, 36479, 110844, 127643, 21147, 1
Offset: 0
A306033 Number of length-n restricted growth strings (RGS) with growth <= nine and first element in [9].
1, 9, 126, 2229, 46791, 1126032, 30377223, 904211997, 29347973748, 1029154793775, 38706399597879, 1551902279238186, 65998768155695109, 2964410257125490269, 140111251278756345054, 6946234487211269640633, 360202406323880296650987, 19488725004898446787394016
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..406
Programs
-
Maple
b:= proc(n, m) option remember; `if`(n=0, 1, add(b(n-1, max(m, j)), j=1..m+9)) end: a:= n-> b(n, 0): seq(a(n), n=0..25); # second Maple program: a:= n-> n!*coeff(series(exp(add((exp(j*x)-1)/j, j=1..9)), x, n+1), x, n): seq(a(n), n=0..25);
Formula
E.g.f.: exp(Sum_{j=1..9} (exp(j*x)-1)/j).
Comments
Examples
Links
Crossrefs
Programs
Maple
Mathematica
Formula