A306024 Number A(n,k) of length-n restricted growth strings (RGS) with growth <= k and first element in [k]; square array A(n,k), n>=0, k>=0, read by antidiagonals.
1, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 7, 5, 0, 1, 4, 15, 31, 15, 0, 1, 5, 26, 95, 164, 52, 0, 1, 6, 40, 214, 717, 999, 203, 0, 1, 7, 57, 405, 2096, 6221, 6841, 877, 0, 1, 8, 77, 685, 4875, 23578, 60619, 51790, 4140, 0, 1, 9, 100, 1071, 9780, 67354, 297692, 652595, 428131, 21147, 0
Offset: 0
A305969 Number of length-n restricted growth strings (RGS) with growth <= nine and fixed first element.
1, 1, 10, 145, 2635, 56500, 1383583, 37881805, 1142217640, 37498693555, 1328537843683, 50433784870174, 2039431564419565, 87417904301582485, 3955287872973269098, 188224672012964294293, 9391435700578827609247, 489942796606580418069220, 26659613135178842578434283
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..407
Programs
-
Maple
b:= proc(n, m) option remember; `if`(n=0, 1, add(b(n-1, max(m, j)), j=1..m+9)) end: a:= n-> b(n, -8): seq(a(n), n=0..25); # second Maple program: a:= n-> `if`(n=0, 1, (n-1)!*coeff(series(exp(x+add( (exp(j*x)-1)/j, j=1..9)), x, n), x, n-1)): seq(a(n), n=0..25);
Formula
a(n) = (n-1)! * [x^(n-1)] exp(x+Sum_{j=1..9} (exp(j*x)-1)/j) for n>0, a(0) = 1.
Comments
Examples
Links
Crossrefs
Programs
Maple
Mathematica
Formula