cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A305971 Antidiagonal sums of A305962.

Original entry on oeis.org

1, 2, 3, 5, 11, 34, 141, 736, 4653, 34842, 303848, 3041514, 34520903, 439820187, 6238591638, 97832195694, 1685800545944, 31746373299029, 650170193047230, 14418116545259245, 344857160229381442, 8865220175506008295, 244158955254595904415, 7183277314615065192163
Offset: 0

Views

Author

Alois P. Heinz, Jun 15 2018

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, k, m) option remember; `if`(n=0, 1,
          add(b(n-1, k, max(m, j)), j=1..m+k))
        end:
    a:= n-> add(b(j, n-j, 1+j-n), j=0..n):
    seq(a(n), n=0..25);
    # second Maple program:
    b:= (n, k)-> `if`(n=0, 1, (n-1)!*coeff(series(exp(x+add(
                  (exp(j*x)-1)/j, j=1..k)), x, n), x, n-1)):
    a:= n-> add(b(j, n-j), j=0..n):
    seq(a(n), n=0..25);
  • Mathematica
    b[n_, k_, m_] := b[n, k, m] = If[n == 0, 1, Sum[b[n - 1, k, Max[m, j]], {j, 1, m + k}]];
    a[n_] := Sum[b[j, n - j, 1 + j - n], {j, 0, n}];
    Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Nov 16 2022, after Alois P. Heinz *)

Formula

a(n) = Sum_{j=0..n} (j-1)! * [x^(j-1)] exp(x + Sum_{i=1..n-j} (exp(i*x)-1)/i) for n > 0, a(0) = 1.
a(n) = Sum_{j=0..n} A305962(j,n-j).