A305971 Antidiagonal sums of A305962.
1, 2, 3, 5, 11, 34, 141, 736, 4653, 34842, 303848, 3041514, 34520903, 439820187, 6238591638, 97832195694, 1685800545944, 31746373299029, 650170193047230, 14418116545259245, 344857160229381442, 8865220175506008295, 244158955254595904415, 7183277314615065192163
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..200
Programs
-
Maple
b:= proc(n, k, m) option remember; `if`(n=0, 1, add(b(n-1, k, max(m, j)), j=1..m+k)) end: a:= n-> add(b(j, n-j, 1+j-n), j=0..n): seq(a(n), n=0..25); # second Maple program: b:= (n, k)-> `if`(n=0, 1, (n-1)!*coeff(series(exp(x+add( (exp(j*x)-1)/j, j=1..k)), x, n), x, n-1)): a:= n-> add(b(j, n-j), j=0..n): seq(a(n), n=0..25);
-
Mathematica
b[n_, k_, m_] := b[n, k, m] = If[n == 0, 1, Sum[b[n - 1, k, Max[m, j]], {j, 1, m + k}]]; a[n_] := Sum[b[j, n - j, 1 + j - n], {j, 0, n}]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Nov 16 2022, after Alois P. Heinz *)
Formula
a(n) = Sum_{j=0..n} (j-1)! * [x^(j-1)] exp(x + Sum_{i=1..n-j} (exp(i*x)-1)/i) for n > 0, a(0) = 1.
a(n) = Sum_{j=0..n} A305962(j,n-j).