A306031 Number of length-n restricted growth strings (RGS) with growth <= seven and first element in [7].
1, 7, 77, 1071, 17689, 335083, 7117789, 166862583, 4266097185, 117856459427, 3492369757317, 110332338885167, 3697474419284233, 130877053323860507, 4875005854140483629, 190478720135836588519, 7784916624799021983345, 331981949761308979115795
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..421
Programs
-
Maple
b:= proc(n, m) option remember; `if`(n=0, 1, add(b(n-1, max(m, j)), j=1..m+7)) end: a:= n-> b(n, 0): seq(a(n), n=0..25); # second Maple program: a:= n-> n!*coeff(series(exp(add((exp(j*x)-1)/j, j=1..7)), x, n+1), x, n): seq(a(n), n=0..25);
Formula
E.g.f.: exp(Sum_{j=1..7} (exp(j*x)-1)/j).