A306044 Powers of 2, 3 and 5.
1, 2, 3, 4, 5, 8, 9, 16, 25, 27, 32, 64, 81, 125, 128, 243, 256, 512, 625, 729, 1024, 2048, 2187, 3125, 4096, 6561, 8192, 15625, 16384, 19683, 32768, 59049, 65536, 78125, 131072, 177147, 262144, 390625, 524288, 531441, 1048576, 1594323, 1953125, 2097152, 4194304, 4782969, 8388608
Offset: 1
Keywords
Links
- Michel Marcus, Table of n, a(n) for n = 1..1370
Programs
-
Maple
N:= 10^7: # for terms <= N sort(convert(`union`(seq({seq(b^i,i=0..ilog[b](N))},b=[2,3,5])),list)); # Robert Israel, Nov 18 2022
-
Mathematica
Union[2^Range[0, Log2[5^10]], 3^Range[Log[3, 5^10]], 5^Range[10]]
-
PARI
setunion(setunion(vector(logint(N=10^6,5)+1,k,5^(k-1)), vector(logint(N,3),k,3^k)), vector(logint(N,2),k,2^k)) \\ M. F. Hasler, Jun 24 2018
-
PARI
a(n)= my(f=[2,3,5],q=sum(k=1,#f,1/log(f[k]))); for(i=1,#f, my(p=logint(exp(n/q),f[i]),d=0,j=0,m=0); while(j
Ruud H.G. van Tol, Nov 16 2022 (with the help of the pari-users mailing list) Observation: with f=primes(P), d <= logint(P,2). -
Python
from sympy import integer_log def A306044(n): def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 kmin = kmax >> 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def f(x): return n+x-x.bit_length()-integer_log(x,3)[0]-integer_log(x,5)[0] return bisection(f,n,n) # Chai Wah Wu, Feb 05 2025
Formula
Sum_{n>=1} 1/a(n) = 11/4. - Amiram Eldar, Dec 10 2022
Comments