cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A306044 Powers of 2, 3 and 5.

Original entry on oeis.org

1, 2, 3, 4, 5, 8, 9, 16, 25, 27, 32, 64, 81, 125, 128, 243, 256, 512, 625, 729, 1024, 2048, 2187, 3125, 4096, 6561, 8192, 15625, 16384, 19683, 32768, 59049, 65536, 78125, 131072, 177147, 262144, 390625, 524288, 531441, 1048576, 1594323, 1953125, 2097152, 4194304, 4782969, 8388608
Offset: 1

Views

Author

Zak Seidov, Jun 18 2018

Keywords

Comments

Union of A000079, A000244 and A000351.

Crossrefs

Programs

  • Maple
    N:= 10^7: # for terms <= N
    sort(convert(`union`(seq({seq(b^i,i=0..ilog[b](N))},b=[2,3,5])),list)); # Robert Israel, Nov 18 2022
  • Mathematica
    Union[2^Range[0, Log2[5^10]], 3^Range[Log[3, 5^10]], 5^Range[10]]
  • PARI
    setunion(setunion(vector(logint(N=10^6,5)+1,k,5^(k-1)), vector(logint(N,3),k,3^k)), vector(logint(N,2),k,2^k)) \\ M. F. Hasler, Jun 24 2018
    
  • PARI
    a(n)= my(f=[2,3,5],q=sum(k=1,#f,1/log(f[k]))); for(i=1,#f, my(p=logint(exp(n/q),f[i]),d=0,j=0,m=0); while(jRuud H.G. van Tol, Nov 16 2022 (with the help of the pari-users mailing list) Observation: with f=primes(P), d <= logint(P,2).
    
  • Python
    from sympy import integer_log
    def A306044(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-x.bit_length()-integer_log(x,3)[0]-integer_log(x,5)[0]
        return bisection(f,n,n) # Chai Wah Wu, Feb 05 2025

Formula

Sum_{n>=1} 1/a(n) = 11/4. - Amiram Eldar, Dec 10 2022