cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A306069 Partial sums of A286324: Sum_{k=1..n} bd(k) where bd(k) is the number of bi-unitary divisors of k.

Original entry on oeis.org

1, 3, 5, 7, 9, 13, 15, 19, 21, 25, 27, 31, 33, 37, 41, 45, 47, 51, 53, 57, 61, 65, 67, 75, 77, 81, 85, 89, 91, 99, 101, 107, 111, 115, 119, 123, 125, 129, 133, 141, 143, 151, 153, 157, 161, 165, 167, 175, 177, 181, 185, 189, 191, 199, 203, 211, 215, 219, 221
Offset: 1

Views

Author

Amiram Eldar, Jun 19 2018

Keywords

Comments

The bi-unitary version of A006218 and A064608.

References

  • József Sándor, Dragoslav S. Mitrinovic, Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, page 72.

Crossrefs

Programs

  • Mathematica
    fun[p_, e_] := If[Mod[e, 2] == 1, (e + 1), e]; bdivnum[n_] := If[n==1,1,Times @@ (fun @@@ FactorInteger[n])]; Accumulate@ Array[bdivnum, {60}]
  • PARI
    udivs(n) = {my(d = divisors(n)); select(x->(gcd(x, n/x)==1), d); }
    gcud(n, m) = vecmax(setintersect(udivs(n), udivs(m)));
    biudivs(n) = select(x->(gcud(x, n/x)==1), divisors(n));
    a(n) = sum(k=1, n, #biudivs(k)); \\ Michel Marcus, Jun 20 2018

Formula

a(n) = A*n*(log(n) + 2*gamma - 1 + B) + O(n^(1/2)*exp(-A * log(n)^(3/5) * log(log(n))^(-1/5))), where gamma = A001620, A = A306071 and B = A306072.