cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A306072 Decimal expansion of 2 * Sum_{p prime}(p^2-p-1)*log(p)/(p^4+2*p^3+1).

Original entry on oeis.org

4, 0, 5, 2, 3, 7, 0, 3, 1, 4, 4, 4, 2, 2, 3, 9, 2, 5, 0, 8, 5, 9, 6, 5, 0, 9, 9, 1, 1, 2, 1, 8, 5, 2, 3, 4, 1, 0, 4, 4, 1, 4, 1, 7, 2, 4, 0, 4, 1, 9, 8, 4, 9, 2, 6, 2, 3, 4, 6, 3, 6, 2, 9, 7, 7, 5, 3, 7, 9, 8, 9, 0, 1, 8, 1, 8, 6, 4, 0, 3, 8, 0, 4, 8, 7, 4, 2, 6, 4, 6, 6, 4, 3, 9, 3, 6, 8, 4, 0, 6, 3, 7, 7, 7, 8, 4
Offset: 0

Views

Author

Amiram Eldar, Jun 19 2018

Keywords

Comments

The constant B that appears in the asymptotic formula for the sum of the bi-unitary divisor function (A306069).

Examples

			0.405237031444223925085965099112185234104414172404198492623463629775379...
		

Crossrefs

Programs

  • Mathematica
    cc = CoefficientList[Series[(p^2 - p - 1)/(p^4 + 2*p^3 + 1) /. p -> 1/x, {x, 0, 30}], x]; f = FindSequenceFunction[cc]; digits = 20; B = 2 NSum[f[n + 1 // Round]*(-PrimeZetaP'[n]), {n, 2, Infinity}, Method -> "AlternatingSigns", NSumTerms -> 10 digits, WorkingPrecision -> 5 digits]; RealDigits[B, 10, digits][[1]] (* Jean-François Alcover, Jun 19 2018 *)
    ratfun = 2*(p^2 - p - 1)/(p^4 + 2*p^3 + 1); zetas = 0; ratab = Table[konfun = Simplify[ratfun + c/(p^power - 1)] // Together; coefs = CoefficientList[Numerator[konfun], p]; sol = Solve[Last[coefs] == 0, c][[1]]; zetas = zetas + c*Zeta'[power]/Zeta[power] /. sol; ratfun = konfun /. sol, {power, 2, 20}]; Do[Print[N[Sum[Log[p]*ratfun /. p -> Prime[k], {k, 1, m}] + zetas, 100]], {m, 2000, 20000, 2000}] (* Vaclav Kotesovec, Jun 17 2020 *)

Extensions

a(1)-a(20) from Jean-François Alcover, Jun 19 2018
More digits from Vaclav Kotesovec, Jun 17 2020