A306146 Numbers k such that A000010(A023900(k)) = A023900(A000010(k)).
1, 14, 22, 28, 44, 46, 56, 75, 88, 92, 94, 112, 118, 166, 176, 184, 188, 214, 224, 236, 332, 334, 352, 358, 368, 375, 376, 422, 428, 448, 454, 472, 526, 639, 662, 664, 668, 694, 704, 716, 718, 736, 752, 766, 844, 856, 867, 896, 908, 926, 934, 944, 958, 1006, 1052, 1075, 1094, 1126, 1142, 1174, 1179, 1324
Offset: 1
Keywords
Examples
75 is a term because A000010(A023900(75)) = A023900(A000010(75)) = 4.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Maple
isA306146 := proc(n) local a239 ; a239 := A023900(n) ; if a239 >= 1 then simplify( numtheory[phi](a239) = A023900(numtheory[phi](n)) ); else false; end if; end proc: for n from 1 to 1000 do if isA306146(n) then printf("%d,",n) ; end if; end do: # R. J. Mathar, Feb 14 2019
-
Mathematica
f[p_, e_] := 1 - p; d[1] = 1; d[n_] := Times @@ (f @@@ FactorInteger[n]); Select[Range[1324],(d1 = d[#]) > 0 && d[EulerPhi[#]] == EulerPhi[d1] &] (* Amiram Eldar, Feb 19 2020 *)
-
PARI
a023900(n) = sumdivmult(n, d, d*moebius(d)) is(n) = sdm = a023900(n); if(sdm < 0, return(0), sdmphi = a023900(eulerphi(n)); eulerphi(sdm) == sdmphi) \\ David A. Corneth, Aug 17 2018
Comments