cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A306146 Numbers k such that A000010(A023900(k)) = A023900(A000010(k)).

Original entry on oeis.org

1, 14, 22, 28, 44, 46, 56, 75, 88, 92, 94, 112, 118, 166, 176, 184, 188, 214, 224, 236, 332, 334, 352, 358, 368, 375, 376, 422, 428, 448, 454, 472, 526, 639, 662, 664, 668, 694, 704, 716, 718, 736, 752, 766, 844, 856, 867, 896, 908, 926, 934, 944, 958, 1006, 1052, 1075, 1094, 1126, 1142, 1174, 1179, 1324
Offset: 1

Views

Author

Torlach Rush, Aug 11 2018

Keywords

Comments

No term is a product of an odd number of distinct prime factors (because then A023900 is negative, i.e., contains no terms from A030230).
For known terms:
- a(n) is nonsquarefree iff A000010(n) is nonsquarefree.
- If a(n) is squarefree then A000010(n) and A023900(n) are both squarefree.

Examples

			75 is a term because A000010(A023900(75)) = A023900(A000010(75)) = 4.
		

Crossrefs

Programs

  • Maple
    isA306146 := proc(n)
        local a239 ;
        a239 := A023900(n) ;
        if a239 >= 1 then
            simplify( numtheory[phi](a239) = A023900(numtheory[phi](n)) );
        else
            false;
        end if;
    end proc:
    for n from 1 to 1000 do
        if isA306146(n) then
            printf("%d,",n) ;
        end if;
    end do: # R. J. Mathar, Feb 14 2019
  • Mathematica
    f[p_, e_] := 1 - p; d[1] = 1; d[n_] := Times @@ (f @@@ FactorInteger[n]); Select[Range[1324],(d1 = d[#]) > 0 && d[EulerPhi[#]] == EulerPhi[d1] &] (* Amiram Eldar, Feb 19 2020 *)
  • PARI
    a023900(n) = sumdivmult(n, d, d*moebius(d))
    is(n) = sdm = a023900(n); if(sdm < 0, return(0), sdmphi = a023900(eulerphi(n)); eulerphi(sdm) == sdmphi) \\ David A. Corneth, Aug 17 2018