cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A103265 Number of partitions of n in which both even and odd square parts occur in 2 forms c, c* and with multiplicity 1. There is no restriction on parts which are twice squares.

Original entry on oeis.org

1, 2, 2, 2, 4, 6, 6, 6, 8, 12, 14, 14, 16, 22, 26, 26, 30, 38, 44, 46, 52, 62, 70, 74, 80, 96, 110, 116, 124, 146, 166, 174, 186, 210, 238, 254, 272, 302, 338, 362, 384, 426, 470, 502, 532, 588, 646, 686, 726, 792, 872, 926, 980, 1062
Offset: 0

Views

Author

Noureddine Chair, Feb 27 2005

Keywords

Comments

Convolution of A001156 and A033461. - Vaclav Kotesovec, Aug 18 2015

Examples

			E.g. a(8)=8 because 8 can be written as 8, 44*, 422, 4*22, 4211*, 4*211*, 2222, 22211*.
		

Crossrefs

Programs

  • Maple
    series(product((1+x^(k^2))/(1-x^(k^2)),k=1..100),x=0,100);
  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1+x^(k^2)) / (1-x^(k^2)), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 18 2015 *)

Formula

G.f.: Product_{k>0}((1+x^k^2)/(1-x^k^2)).
a(n) ~ exp(3 * ((4-sqrt(2))*zeta(3/2))^(2/3) * Pi^(1/3) * n^(1/3) / 4) * ((4-sqrt(2))*zeta(3/2))^(2/3) / (2^(7/2) * sqrt(3) * Pi^(7/6) * n^(7/6)). - Vaclav Kotesovec, Dec 29 2016

A306082 Expansion of e.g.f. Product_{k>=1} 1/(1 - (exp(x) - 1)^(k^2)).

Original entry on oeis.org

1, 1, 3, 13, 99, 901, 8763, 92653, 1125939, 16333141, 274594923, 5041348093, 97841114979, 2007694705381, 44043941312283, 1036207737976333, 25969433606691219, 688418684249653621, 19275116061819888843, 571069469474068377373, 17898523203378840958659
Offset: 0

Views

Author

Vaclav Kotesovec, Jun 20 2018

Keywords

Comments

Conjecture: for positive integer k, reducing the sequence modulo k produces an eventually periodic sequence with period dividing phi(k) = A000010(k). For example, modulo 7 we obtain the sequence [1, 1, 3, 6, 1, 5, 6, 1, 3, 6, 1, 5, 6, 1, 3, 6, 1, 5, 6, ...], with an apparent period of 6 beginning at a(1). - Peter Bala, Feb 22 2025

Crossrefs

Programs

  • Maple
    a:=series(mul(1/(1-(exp(x)-1)^(k^2)),k=1..100),x=0,21): seq(n!*coeff(a, x, n), n=0..20); # Paolo P. Lava, Mar 26 2019
  • Mathematica
    nmax = 20; CoefficientList[Series[Product[1/(1 - (Exp[x] - 1)^(k^2)), {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]!

Formula

a(n) = Sum_{k=0..n} Stirling2(n,k) * A001156(k) * k!.
a(n) ~ n! * exp(3 * 2^(-5/3) * Zeta(3/2)^(2/3) * (Pi*n/log(2))^(1/3)) * Zeta(3/2)^(2/3) / (2^(13/6) * sqrt(3) * Pi^(7/6) * n^(7/6) * (log(2))^(n - 1/6)).

A306083 Expansion of e.g.f. Product_{k>=1} (1 + (exp(x) - 1)^(k^2)).

Original entry on oeis.org

1, 1, 1, 1, 25, 361, 3361, 25201, 166825, 1383481, 25879921, 651816001, 14450460025, 280347467401, 5253918022081, 107822784560401, 2578135250199625, 69030779356572121, 1953531819704493841, 56903093167217522401, 1689294590583626265625
Offset: 0

Views

Author

Vaclav Kotesovec, Jun 20 2018

Keywords

Crossrefs

Programs

  • Maple
    a:=series(mul(1+(exp(x)-1)^(k^2),k=1..100),x=0,21): seq(n!*coeff(a, x, n),n=0..20); # Paolo P. Lava, Mar 26 2019
  • Mathematica
    nmax = 20; CoefficientList[Series[Product[(1 + (Exp[x] - 1)^(k^2)), {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]!

Formula

a(n) = Sum_{k=0..n} Stirling2(n,k) * A033461(k) * k!.
a(n) ~ n! * exp(3 * (Pi/log(2))^(1/3) * ((sqrt(2) - 1) * Zeta(3/2))^(2/3) * n^(1/3) / 4) * ((sqrt(2) - 1) * Zeta(3/2) / Pi)^(1/3) / (2 * sqrt(6) * n^(5/6) * log(2)^(n + 1/6)).
Showing 1-3 of 3 results.