cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A279225 Expansion of Product_{k>=1} 1/(1 - x^(k^2))^2.

Original entry on oeis.org

1, 2, 3, 4, 7, 10, 13, 16, 22, 30, 38, 46, 58, 74, 90, 106, 129, 158, 190, 222, 264, 314, 370, 426, 495, 580, 674, 772, 886, 1024, 1174, 1332, 1512, 1724, 1961, 2210, 2494, 2818, 3180, 3558, 3984, 4468, 5003, 5572, 6202, 6918, 7698, 8530, 9440, 10466, 11589
Offset: 0

Views

Author

Vaclav Kotesovec, Dec 08 2016

Keywords

Comments

Number of partitions of n into squares of 2 kinds. - Ilya Gutkovskiy, Jan 23 2018

Crossrefs

Programs

  • Mathematica
    nmax = 100; CoefficientList[Series[Product[1/(1 - x^(k^2))^2, {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ exp(3 * Pi^(1/3) * Zeta(3/2)^(2/3) * n^(1/3) / 2^(2/3)) * Zeta(3/2) / (8 * sqrt(3) * Pi^2 * n^(3/2)). - Vaclav Kotesovec, Dec 29 2016

A279226 Expansion of Product_{k>=1} (1 + x^(k^2))^2.

Original entry on oeis.org

1, 2, 1, 0, 2, 4, 2, 0, 1, 4, 5, 2, 0, 4, 8, 4, 2, 6, 7, 4, 5, 8, 6, 4, 4, 10, 15, 8, 1, 12, 24, 12, 1, 8, 19, 18, 10, 8, 16, 24, 17, 16, 23, 20, 12, 22, 34, 20, 8, 20, 42, 38, 18, 18, 42, 52, 30, 20, 34, 46, 34, 30, 46, 48, 36, 46, 72, 58, 33, 42, 71, 72, 41
Offset: 0

Views

Author

Vaclav Kotesovec, Dec 08 2016

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 100; CoefficientList[Series[Product[(1 + x^(k^2))^2, {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 20; poly = ConstantArray[0, nmax^2 + 1]; poly[[1]] = 1; poly[[2]] = 2; poly[[3]] = 1; Do[Do[Do[poly[[j + 1]] += poly[[j - k^2 + 1]], {j, nmax^2, k^2, -1}];, {p, 1, 2}], {k, 2, nmax}]; poly (* Vaclav Kotesovec, Dec 09 2016 *)

Formula

a(n) ~ exp(3 * Pi^(1/3) * ((sqrt(2)-1) * Zeta(3/2))^(2/3) * n^(1/3) / 2) * sqrt(2/3) * ((sqrt(2)-1) * Zeta(3/2) / Pi)^(1/3) / (4*n^(5/6)). - Vaclav Kotesovec, Dec 09 2016

A280263 G.f.: Product_{k>=1} (1+x^(k^3)) / (1-x^(k^3)).

Original entry on oeis.org

1, 2, 2, 2, 2, 2, 2, 2, 4, 6, 6, 6, 6, 6, 6, 6, 8, 10, 10, 10, 10, 10, 10, 10, 12, 14, 14, 16, 18, 18, 18, 18, 20, 22, 22, 26, 30, 30, 30, 30, 32, 34, 34, 38, 42, 42, 42, 42, 44, 46, 46, 50, 54, 54, 56, 58, 60, 62, 62, 66, 70, 70, 74, 78, 82, 86, 86, 90, 94
Offset: 0

Views

Author

Vaclav Kotesovec, Dec 30 2016

Keywords

Comments

Convolution of A003108 and A279329.
In general, if m > 0 and g.f. = Product_{k>=1} (1 + x^(k^m)) / (1 - x^(k^m)), then a(n) ~ exp((m+1) * ((2^(1 + 1/m) - 1) * Gamma(1/m) * Zeta(1 + 1/m) / m^2)^(m/(m+1)) * (n/2)^(1/(m+1))) * ((2^(1 + 1/m) - 1) * Gamma(1/m) * Zeta(1 + 1/m))^(m/(m+1)) / (sqrt(m+1) * 2^(m/2 + (m+2)/(m+1)) * m^((3*m-1)/(2*(m+1))) * Pi^((m+1)/2) * n^((3*m+1)/(2*(m+1)))).

Crossrefs

Programs

  • Mathematica
    nmax=150; CoefficientList[Series[Product[(1+x^(k^3))/(1-x^(k^3)), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ exp(2^(7/4) * ((2^(4/3)-1) * Gamma(1/3) * Zeta(4/3))^(3/4) * n^(1/4) / 3^(3/2)) * ((2^(4/3)-1) * Gamma(1/3) * Zeta(4/3))^(3/4) / (3 * 2^(15/4) * Pi^2 * n^(5/4)).

A280366 G.f.: Product_{k>=1} (1 + x^(k*(k+1)/2)) / (1 - x^(k*(k+1)/2)).

Original entry on oeis.org

1, 2, 2, 4, 6, 6, 10, 14, 14, 20, 28, 30, 38, 50, 54, 66, 86, 94, 110, 138, 152, 178, 218, 238, 274, 330, 362, 412, 488, 534, 602, 710, 778, 864, 1006, 1102, 1220, 1410, 1542, 1696, 1940, 2122, 2328, 2638, 2878, 3148, 3550, 3870, 4214, 4722, 5136, 5580, 6230
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 02 2017

Keywords

Comments

Convolution of A024940 and A007294.

Crossrefs

Programs

  • Mathematica
    nmax = 60; CoefficientList[Series[Product[(1+x^(k*(k+1)/2))/(1-x^(k*(k+1)/2)), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ exp(3 * 2^(-4/3) * Pi^(1/3) * ((2*sqrt(2)-1) * Zeta(3/2))^(2/3) * n^(1/3)) * Zeta(3/2) * (2*sqrt(2)-1) / (32 * sqrt(3) * Pi * n^(3/2)).

A280276 G.f.: Product_{k>=1} (1 + x^k) / (1 - x^(k^2)).

Original entry on oeis.org

1, 2, 3, 5, 8, 12, 17, 24, 33, 46, 62, 82, 108, 141, 182, 233, 297, 375, 472, 590, 733, 907, 1117, 1369, 1671, 2034, 2465, 2978, 3586, 4304, 5152, 6149, 7319, 8689, 10293, 12162, 14340, 16871, 19806, 23207, 27139, 31678, 36909, 42932, 49851, 57794, 66897
Offset: 0

Views

Author

Vaclav Kotesovec, Dec 30 2016

Keywords

Comments

Convolution of A000009 and A001156.

Crossrefs

Programs

  • Mathematica
    nmax=80; CoefficientList[Series[Product[(1+x^k)/(1-x^(k^2)), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ exp(Pi*sqrt(n/3) + 3^(1/4) * Zeta(3/2) * n^(1/4) / sqrt(2) - 3*Zeta(3/2)^2 / (16*Pi)) / (8*sqrt(6*Pi)*n).

A279227 Expansion of Product_{k>=1} (1 + x^(k^2))^2/(1 - x^(k^2))^2.

Original entry on oeis.org

1, 4, 8, 12, 20, 36, 56, 76, 104, 152, 216, 284, 364, 484, 648, 828, 1028, 1300, 1664, 2076, 2532, 3108, 3848, 4700, 5640, 6776, 8200, 9848, 11660, 13796, 16424, 19452, 22776, 26612, 31240, 36572, 42440, 49092, 56968, 66044, 76040, 87236, 100280, 115244
Offset: 0

Views

Author

Vaclav Kotesovec, Dec 08 2016

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 100; CoefficientList[Series[Product[(1 + x^(k^2))^2/(1 - x^(k^2))^2, {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ (4-sqrt(2)) * Zeta(3/2) * exp(3 * Pi^(1/3) * ((4-sqrt(2)) * Zeta(3/2))^(2/3) * n^(1/3) / 2^(4/3)) / (32 * sqrt(3) * Pi^2 * n^(3/2)). - Vaclav Kotesovec, Dec 29 2016

A306147 Expansion of e.g.f. Product_{k>=1} (1 + (exp(x)-1)^(k^2)) / (1 - (exp(x)-1)^(k^2)).

Original entry on oeis.org

1, 2, 6, 26, 198, 2042, 22566, 259226, 3249798, 47156282, 799108326, 15116875226, 305203728198, 6488119430522, 146602455461286, 3557921474016026, 92563621667899398, 2554423824661976762, 74142584637465337446, 2258422219660738881626, 72255096004023644467398
Offset: 0

Views

Author

Vaclav Kotesovec, Jun 23 2018

Keywords

Comments

Convolution of A306082 and A306083.

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[Product[(1 + (Exp[x] - 1)^(k^2)) / (1 - (Exp[x] - 1)^(k^2)), {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]!

Formula

a(n) = Sum_{k=0..n} Stirling2(n,k) * A103265(k) * k!.
a(n) ~ n! * ((2*sqrt(2) - 1) * Zeta(3/2))^(2/3) * exp(3 * (Pi/log(2))^(1/3) * ((2*sqrt(2) - 1) * Zeta(3/2))^(2/3) * n^(1/3) / 4) / (8 * sqrt(3) * Pi^(7/6) * n^(7/6) * (log(2))^(n - 1/6)).

A291666 Expansion of Product_{k>=1} ((1 + x^(k^2)) / (1 - x^(k^2)))^(k^2).

Original entry on oeis.org

1, 2, 2, 2, 10, 18, 18, 18, 50, 100, 118, 118, 206, 438, 582, 582, 806, 1606, 2344, 2506, 3122, 5322, 8202, 9498, 11130, 16844, 26110, 32272, 37018, 52274, 78018, 100098, 115986, 155026, 223190, 291674, 345132, 439518, 618734, 811790, 972846, 1204190, 1653726
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 29 2017

Keywords

Comments

Convolution of A291649 and A291655.

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[((1+x^(k^2))/(1-x^(k^2)))^(k^2), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

log(a(n)) ~ 5 * Pi^(1/5) * ((8-sqrt(2)) * Zeta(5/2))^(2/5) * n^(3/5) / (4*3^(3/5)).

A161090 Number of partitions of n into squares where every part appears at least 2 times.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 3, 2, 3, 3, 4, 3, 5, 4, 6, 5, 6, 6, 7, 6, 8, 8, 9, 9, 11, 10, 13, 11, 14, 14, 16, 15, 18, 18, 20, 19, 22, 22, 25, 24, 27, 28, 32, 29, 36, 34, 39, 38, 42, 42, 47, 45, 51, 51, 56, 55, 62, 61, 68, 66, 75, 73, 82, 79, 88, 88, 96, 93, 104, 105, 112, 113, 122, 123
Offset: 1

Views

Author

R. H. Hardin, Jun 02 2009

Keywords

Examples

			a(12)=3 because we have 444, 441111, and 1^(12). - _Emeric Deutsch_, Jun 21 2009
		

Crossrefs

Programs

  • Maple
    g := -1+product(1+x^(2*j^2)/(1-x^(j^2)), j = 1 .. 10): gser := series(g, x = 0, 90): seq(coeff(gser, x, n), n = 1 .. 79); # Emeric Deutsch, Jun 21 2009
  • Mathematica
    nmax = 100; Rest[CoefficientList[Series[-1 + Product[(1 + x^(2*k^2)/(1-x^(k^2))), {k, 1, Sqrt[nmax] + 1}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Jun 15 2025 *)
    nmax = 100; Rest[CoefficientList[Series[-1 + Product[(1 + x^(3*k^2))/(1 - x^(2*k^2)), {k, 1, Sqrt[nmax/2] + 1}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Jun 15 2025 *)

Formula

G.f.: -1 + Product_{j>=1} (1 + x^(2*j^2)/(1-x^(j^2))). - Emeric Deutsch, Jun 21 2009
From Vaclav Kotesovec, Jun 15 2025: (Start)
G.f.: -1 + Product_{k>=1} (1 + x^(3*k^2)) / (1 - x^(2*k^2)).
a(n) ~ ((2 - sqrt(2) + sqrt(6))*zeta(3/2))^(2/3) * exp(Pi^(1/3)*(3*(2 - sqrt(2) + sqrt(6))*zeta(3/2))^(2/3)*n^(1/3)/4) / (8 * 3^(5/6) * Pi^(7/6) * n^(7/6)). (End)

A300413 Expansion of Product_{k>=1} (1 + x^prime(k))/(1 - x^prime(k)).

Original entry on oeis.org

1, 0, 2, 2, 2, 6, 4, 10, 10, 14, 20, 22, 32, 38, 48, 60, 74, 90, 112, 134, 164, 196, 236, 282, 336, 398, 472, 554, 652, 766, 890, 1046, 1206, 1408, 1624, 1876, 2168, 2486, 2860, 3276, 3744, 4282, 4878, 5554, 6316, 7160, 8124, 9186, 10388, 11722, 13216, 14876, 16732, 18794, 21084, 23636
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 05 2018

Keywords

Comments

Convolution of the sequences A000586 and A000607.

Crossrefs

Programs

  • Mathematica
    nmax = 55; CoefficientList[Series[Product[(1 + x^Prime[k])/(1 - x^Prime[k]), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} (1 + x^A000040(k))/(1 - x^A000040(k)).
log(a(n)) ~ Pi*sqrt(2*n/log(n/3)) * (1/3 + 2*sqrt(log(n/3) / log(2*n/3)) / 3). - Vaclav Kotesovec, Jan 12 2021
Showing 1-10 of 14 results. Next