A306214 Numbers that are the sum of fourth powers of three distinct positive integers in arithmetic progression.
98, 353, 707, 962, 1568, 2177, 2658, 3107, 4322, 4737, 5648, 7187, 7793, 7938, 9587, 11312, 12657, 13058, 15392, 15938, 17123, 19362, 20657, 23153, 23603, 25088, 28593, 30963, 31202, 32738, 34832, 35747, 40962, 42528, 45233, 45377, 49712, 49763, 54722, 57153, 57267, 61250, 63938, 67667, 69152
Offset: 1
Keywords
Examples
353 = 2^4 + 3^4 + 4^4, with 3 - 2 = 4 - 3 = 1; 7187 = 1^4 + 5^4 + 9^4, with 5 - 1 = 9 - 5 = 4.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
N:= 10^5: # for all terms <= N Res:= NULL: for a from 1 to floor((N/3)^(1/4)) do for d from 1 do v:= a^4 + (a+d)^4 + (a+2*d)^4; if v > N then break fi; Res:= Res, v od od: sort(convert({Res},list)); # Robert Israel, Feb 17 2019
-
PARI
for(n=1, 70000, k=(n/3)^(1/4); a=2; v=0; while(a<=k&&v==0, d=sqrt(sqrt(2*n+30*a^4)/2-3*a^2); if(d==truncate(d)&&d>=1&&d<=a-1, v=1; print1(n,", ")); a+=1))
Comments