cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A306234 Number T(n,k) of occurrences of k in a (signed) displacement set of a permutation of [n] divided by |k|!; triangle T(n,k), n>=1, 1-n<=k<=n-1, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 4, 3, 1, 1, 5, 13, 15, 13, 5, 1, 1, 7, 28, 67, 76, 67, 28, 7, 1, 1, 9, 49, 179, 411, 455, 411, 179, 49, 9, 1, 1, 11, 76, 375, 1306, 2921, 3186, 2921, 1306, 375, 76, 11, 1, 1, 13, 109, 679, 3181, 10757, 23633, 25487, 23633, 10757, 3181, 679, 109, 13, 1
Offset: 1

Views

Author

Alois P. Heinz, Feb 17 2019

Keywords

Examples

			Triangle T(n,k) begins:
  :                                 1                              ;
  :                           1,    1,    1                        ;
  :                     1,    3,    4,    3,    1                  ;
  :               1,    5,   13,   15,   13,    5,   1             ;
  :          1,   7,   28,   67,   76,   67,   28,   7,  1         ;
  :      1,  9,  49,  179,  411,  455,  411,  179,  49,  9,  1     ;
  :  1, 11, 76, 375, 1306, 2921, 3186, 2921, 1306, 375, 76, 11, 1  ;
		

Crossrefs

Columns k=0-10 give (offsets may differ): A002467, A180191, A324352, A324353, A324354, A324355, A324356, A324357, A324358, A324359, A324360.
Row sums give A306525.
T(n+1,n) gives A000012.
T(n+2,n) gives A005408.
T(n+2,n-1) gives A056107.
T(2n,n) gives A324361.

Programs

  • Maple
    b:= proc(s, d) option remember; (n-> `if`(n=0, add(x^j, j=d),
          add(b(s minus {i}, d union {n-i}), i=s)))(nops(s))
        end:
    T:= n-> (p-> seq(coeff(p, x, i)/abs(i)!, i=1-n..n-1))(b({$1..n}, {})):
    seq(T(n), n=1..8);
    # second Maple program:
    T:= (n, k)-> -add((-1)^j*binomial(n-abs(k), j)*(n-j)!, j=1..n)/abs(k)!:
    seq(seq(T(n, k), k=1-n..n-1), n=1..9);
  • Mathematica
    T[n_, k_] := (-1/Abs[k]!) Sum[(-1)^j Binomial[n-Abs[k], j] (n-j)!, {j, 1, n}];
    Table[T[n, k], {n, 1, 9}, {k, 1-n, n-1}] // Flatten (* Jean-François Alcover, Feb 15 2021 *)

Formula

T(n,k) = T(n,-k).
T(n,k) = -1/|k|! * Sum_{j=1..n} (-1)^j * binomial(n-|k|,j) * (n-j)!.
T(n,k) = (n-|k|)! [x^(n-|k|)] (1-exp(-x))/(1-x)^(|k|+1).
T(n+1,n) = 1.
T(n,k) = A306461(n,k) / |k|!.
Sum_{k=1-n..n-1} |k|! * T(n,k) = A306455(n).