A306234 Number T(n,k) of occurrences of k in a (signed) displacement set of a permutation of [n] divided by |k|!; triangle T(n,k), n>=1, 1-n<=k<=n-1, read by rows.
1, 1, 1, 1, 1, 3, 4, 3, 1, 1, 5, 13, 15, 13, 5, 1, 1, 7, 28, 67, 76, 67, 28, 7, 1, 1, 9, 49, 179, 411, 455, 411, 179, 49, 9, 1, 1, 11, 76, 375, 1306, 2921, 3186, 2921, 1306, 375, 76, 11, 1, 1, 13, 109, 679, 3181, 10757, 23633, 25487, 23633, 10757, 3181, 679, 109, 13, 1
Offset: 1
Examples
Triangle T(n,k) begins: : 1 ; : 1, 1, 1 ; : 1, 3, 4, 3, 1 ; : 1, 5, 13, 15, 13, 5, 1 ; : 1, 7, 28, 67, 76, 67, 28, 7, 1 ; : 1, 9, 49, 179, 411, 455, 411, 179, 49, 9, 1 ; : 1, 11, 76, 375, 1306, 2921, 3186, 2921, 1306, 375, 76, 11, 1 ;
Links
- Alois P. Heinz, Rows n = 1..142, flattened
- Wikipedia, Permutation
Crossrefs
Programs
-
Maple
b:= proc(s, d) option remember; (n-> `if`(n=0, add(x^j, j=d), add(b(s minus {i}, d union {n-i}), i=s)))(nops(s)) end: T:= n-> (p-> seq(coeff(p, x, i)/abs(i)!, i=1-n..n-1))(b({$1..n}, {})): seq(T(n), n=1..8); # second Maple program: T:= (n, k)-> -add((-1)^j*binomial(n-abs(k), j)*(n-j)!, j=1..n)/abs(k)!: seq(seq(T(n, k), k=1-n..n-1), n=1..9);
-
Mathematica
T[n_, k_] := (-1/Abs[k]!) Sum[(-1)^j Binomial[n-Abs[k], j] (n-j)!, {j, 1, n}]; Table[T[n, k], {n, 1, 9}, {k, 1-n, n-1}] // Flatten (* Jean-François Alcover, Feb 15 2021 *)