0, 1, 3, 13, 67, 411, 2921, 23633, 214551, 2160343, 23897269, 288102189, 3760013027, 52816397219, 794536751217, 12744659120521, 217140271564591, 3916221952414383, 74539067188152941, 1493136645424092773, 31400620285465593339, 691708660911435955579
Offset: 1
A324362
Total number of occurrences of k in the (signed) displacement sets of all permutations of [n+k] divided by k!; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
0, 0, 1, 0, 1, 1, 0, 1, 3, 4, 0, 1, 5, 13, 15, 0, 1, 7, 28, 67, 76, 0, 1, 9, 49, 179, 411, 455, 0, 1, 11, 76, 375, 1306, 2921, 3186, 0, 1, 13, 109, 679, 3181, 10757, 23633, 25487, 0, 1, 15, 148, 1115, 6576, 29843, 98932, 214551, 229384, 0, 1, 17, 193, 1707, 12151, 69299, 307833, 1006007, 2160343, 2293839
Offset: 0
Square array A(n,k) begins:
0, 0, 0, 0, 0, 0, 0, ...
1, 1, 1, 1, 1, 1, 1, ...
1, 3, 5, 7, 9, 11, 13, ...
4, 13, 28, 49, 76, 109, 148, ...
15, 67, 179, 375, 679, 1115, 1707, ...
76, 411, 1306, 3181, 6576, 12151, 20686, ...
455, 2921, 10757, 29843, 69299, 142205, 266321, ...
Columns k=0-10 give:
A002467,
A180191(n+1),
A324352,
A324353,
A324354,
A324355,
A324356,
A324357,
A324358,
A324359,
A324360.
-
A:= (n, k)-> -add((-1)^j*binomial(n, j)*(n+k-j)!, j=1..n)/k!:
seq(seq(A(n, d-n), n=0..d), d=0..12);
-
m = 10;
col[k_] := col[k] = CoefficientList[(1-Exp[-x])/(1-x)^(k+1)+O[x]^(m+1), x]* Range[0, m]!;
A[n_, k_] := col[k][[n+1]];
Table[A[n, d-n], {d, 0, m}, {n, 0, d}] // Flatten (* Jean-François Alcover, May 03 2021 *)
A306461
Number T(n,k) of occurrences of k in a (signed) displacement set of a permutation of [n]; triangle T(n,k), n>=1, 1-n<=k<=n-1, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 2, 3, 4, 3, 2, 6, 10, 13, 15, 13, 10, 6, 24, 42, 56, 67, 76, 67, 56, 42, 24, 120, 216, 294, 358, 411, 455, 411, 358, 294, 216, 120, 720, 1320, 1824, 2250, 2612, 2921, 3186, 2921, 2612, 2250, 1824, 1320, 720, 5040, 9360, 13080, 16296, 19086, 21514, 23633, 25487, 23633, 21514, 19086, 16296, 13080, 9360, 5040
Offset: 1
The 6 permutations p of [3]: 123, 132, 213, 231, 312, 321 have (signed) displacement sets {p(i)-i, i=1..3}: {0}, {-1,0,1}, {-1,0,1}, {-2,1}, {-1,2}, {-2,0,2}, respectively. Numbers -2 and 2 occur twice, -1 and 1 occur thrice, and 0 occurs four times. So row n=3 is [2, 3, 4, 3, 2].
Triangle T(n,k) begins:
: 1 ;
: 1, 1, 1 ;
: 2, 3, 4, 3, 2 ;
: 6, 10, 13, 15, 13, 10, 6 ;
: 24, 42, 56, 67, 76, 67, 56, 42, 24 ;
: 120, 216, 294, 358, 411, 455, 411, 358, 294, 216, 120 ;
-
b:= proc(s, d) option remember; (n-> `if`(n=0, add(x^j, j=d),
add(b(s minus {i}, d union {n-i}), i=s)))(nops(s))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=1-n..n-1))(b({$1..n}, {})):
seq(T(n), n=1..8);
# second Maple program:
T:= (n, k)-> -add((-1)^j*binomial(n-abs(k), j)*(n-j)!, j=1..n):
seq(seq(T(n, k), k=1-n..n-1), n=1..9);
-
T[n_, k_] := -Sum[(-1)^j Binomial[n-Abs[k], j] (n-j)!, {j, 1, n}];
Table[Table[T[n, k], {k, 1-n, n-1}], {n, 1, 9}] // Flatten (* Jean-François Alcover, Feb 20 2021, after Alois P. Heinz *)
A306455
Total number of covered falling diagonals in all n X n permutation matrices.
Original entry on oeis.org
0, 1, 3, 14, 73, 454, 3253, 26480, 241505, 2440538, 27075301, 327197452, 4278799105, 60205974230, 907025841317, 14567520651224, 248474458923073, 4485765986251570, 85454391074596165, 1713134893536617348, 36052727133118151201, 794697884305583064302
Offset: 0
The 6 permutations p of [3]: 123, 132, 213, 231, 312, 321 have (signed) displacement sets {p(i)-i, i=1..3}: {0}, {-1,0,1}, {-1,0,1}, {-2,1}, {-1,2}, {-2,0,2}, representing the indices of covered falling diagonals in the permutation matrices
[1 ] [1 ] [ 1 ] [ 1 ] [ 1] [ 1]
[ 1 ] [ 1] [1 ] [ 1] [1 ] [ 1 ]
[ 1] [ 1 ] [ 1] [1 ] [ 1 ] [1 ] , respectively, the sum of the set cardinalities gives a(3) = 1 + 3 + 3 + 2 + 2 + 3 = 14.
-
a:= proc(n) option remember; `if`(n<3, n*(n+1)/2,
((2*n^2-5*n+1)*a(n-1)-(n-1)*(n^2-4*n+2)*a(n-2)
-(n-2)*(n-1)^2*a(n-3))/(n-2))
end:
seq(a(n), n=0..23);
-
a[n_] := a[n] = If[n<3, n(n+1)/2, ((2n^2-5n+1) a[n-1] -
(n-1)(n^2-4n+2) a[n-2] - (n-2)(n-1)^2 a[n-3])/(n-2)];
a /@ Range[0, 23] (* Jean-François Alcover, Aug 24 2021, after Alois P. Heinz *)
A324224
Total number T(n,k) of 1's in falling diagonals with index k in all n X n permutation matrices divided by |k|!; triangle T(n,k), n>=1, 1-n<=k<=n-1, read by rows.
Original entry on oeis.org
1, 1, 2, 1, 1, 4, 6, 4, 1, 1, 6, 18, 24, 18, 6, 1, 1, 8, 36, 96, 120, 96, 36, 8, 1, 1, 10, 60, 240, 600, 720, 600, 240, 60, 10, 1, 1, 12, 90, 480, 1800, 4320, 5040, 4320, 1800, 480, 90, 12, 1, 1, 14, 126, 840, 4200, 15120, 35280, 40320, 35280, 15120, 4200, 840, 126, 14, 1
Offset: 1
Triangle T(n,k) begins:
: 1 ;
: 1, 2, 1 ;
: 1, 4, 6, 4, 1 ;
: 1, 6, 18, 24, 18, 6, 1 ;
: 1, 8, 36, 96, 120, 96, 36, 8, 1 ;
: 1, 10, 60, 240, 600, 720, 600, 240, 60, 10, 1 ;
: 1, 12, 90, 480, 1800, 4320, 5040, 4320, 1800, 480, 90, 12, 1 ;
-
b:= proc(s, c) option remember; (n-> `if`(n=0, c,
add(b(s minus {i}, c+x^(n-i)), i=s)))(nops(s))
end:
T:= n-> (p-> seq(coeff(p, x, i)/abs(i)!, i=1-n..n-1))(b({$1..n}, 0)):
seq(T(n), n=1..8);
# second Maple program:
egf:= k-> (t-> x^t/t!*hypergeom([2, t], [t+1], x))(abs(k)+1):
T:= (n, k)-> n! * coeff(series(egf(k), x, n+1), x, n):
seq(seq(T(n, k), k=1-n..n-1), n=1..8);
# third Maple program:
T:= (n, k)-> (t-> `if`(t
-
T[n_, k_] := With[{t = Abs[k]}, If[tJean-François Alcover, Mar 25 2021, after 3rd Maple program *)
A324361
Total number of occurrences of n in the (signed) displacement sets of all permutations of [2n] divided by n!.
Original entry on oeis.org
0, 1, 5, 49, 679, 12151, 266321, 6906257, 206788751, 7020426511, 266464077769, 11180868467209, 513915970996583, 25678820830238759, 1385874945753239969, 80341660921985676961, 4979071555472111291551, 328496221117149603559327, 22987138271050177264124441
Offset: 0
-
a:= proc(s) option remember; `if`(n<3, (3*n-1)*n/2,
(8*n-12)*a(n-1)-(16*n^2-64*n+59)*a(n-2)-(4*n-10)*a(n-3))
end:
seq(a(n), n=0..20);
-
A[n_, k_] := -Sum[(-1)^j*Binomial[n, j]*(n+k-j)!, {j, 1, n}]/k!;
a[n_] := A[n, n];
a /@ Range[0, 20] (* Jean-François Alcover, Oct 28 2021, after Alois P. Heinz in A324362 *)
A324352
Total number of occurrences of 2 in the (signed) displacement sets of all permutations of [n+2] divided by 2!.
Original entry on oeis.org
0, 1, 5, 28, 179, 1306, 10757, 98932, 1006007, 11214406, 136041329, 1784556808, 25174694723, 380087428618, 6115760751869, 104481070398556, 1888837397941487, 36026457717419662, 723015306101706857, 15230427461356523056, 336009169512596054459
Offset: 0
-
a:= n-> (k-> -add((-1)^j*binomial(n, j)*(n+k-j)!, j=1..n)/k!)(2):
seq(a(n), n=0..23);
-
m = 23;
CoefficientList[(1-Exp[-x])/(1-x)^3 + O[x]^(m+1), x]*Range[0, m]! (* Jean-François Alcover, May 03 2021 *)
A324353
Total number of occurrences of 3 in the (signed) displacement sets of all permutations of [n+3] divided by 3!.
Original entry on oeis.org
0, 1, 7, 49, 375, 3181, 29843, 307833, 3468671, 42432445, 560365779, 7948580377, 120557659247, 1947336998829, 33378478735475, 605158251430681, 11571369420832383, 232739737871570173, 4912330587789969971, 108564708629365952505, 2507303342099915104559
Offset: 0
-
a:= n-> (k-> -add((-1)^j*binomial(n, j)*(n+k-j)!, j=1..n)/k!)(3):
seq(a(n), n=0..23);
-
m = 23;
CoefficientList[(1-Exp[-x])/(1-x)^4 + O[x]^(m+1), x]*Range[0, m]! (* Jean-François Alcover, May 03 2021 *)
Comments