A306234
Number T(n,k) of occurrences of k in a (signed) displacement set of a permutation of [n] divided by |k|!; triangle T(n,k), n>=1, 1-n<=k<=n-1, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 1, 3, 4, 3, 1, 1, 5, 13, 15, 13, 5, 1, 1, 7, 28, 67, 76, 67, 28, 7, 1, 1, 9, 49, 179, 411, 455, 411, 179, 49, 9, 1, 1, 11, 76, 375, 1306, 2921, 3186, 2921, 1306, 375, 76, 11, 1, 1, 13, 109, 679, 3181, 10757, 23633, 25487, 23633, 10757, 3181, 679, 109, 13, 1
Offset: 1
Triangle T(n,k) begins:
: 1 ;
: 1, 1, 1 ;
: 1, 3, 4, 3, 1 ;
: 1, 5, 13, 15, 13, 5, 1 ;
: 1, 7, 28, 67, 76, 67, 28, 7, 1 ;
: 1, 9, 49, 179, 411, 455, 411, 179, 49, 9, 1 ;
: 1, 11, 76, 375, 1306, 2921, 3186, 2921, 1306, 375, 76, 11, 1 ;
Columns k=0-10 give (offsets may differ):
A002467,
A180191,
A324352,
A324353,
A324354,
A324355,
A324356,
A324357,
A324358,
A324359,
A324360.
-
b:= proc(s, d) option remember; (n-> `if`(n=0, add(x^j, j=d),
add(b(s minus {i}, d union {n-i}), i=s)))(nops(s))
end:
T:= n-> (p-> seq(coeff(p, x, i)/abs(i)!, i=1-n..n-1))(b({$1..n}, {})):
seq(T(n), n=1..8);
# second Maple program:
T:= (n, k)-> -add((-1)^j*binomial(n-abs(k), j)*(n-j)!, j=1..n)/abs(k)!:
seq(seq(T(n, k), k=1-n..n-1), n=1..9);
-
T[n_, k_] := (-1/Abs[k]!) Sum[(-1)^j Binomial[n-Abs[k], j] (n-j)!, {j, 1, n}];
Table[T[n, k], {n, 1, 9}, {k, 1-n, n-1}] // Flatten (* Jean-François Alcover, Feb 15 2021 *)
A306461
Number T(n,k) of occurrences of k in a (signed) displacement set of a permutation of [n]; triangle T(n,k), n>=1, 1-n<=k<=n-1, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 2, 3, 4, 3, 2, 6, 10, 13, 15, 13, 10, 6, 24, 42, 56, 67, 76, 67, 56, 42, 24, 120, 216, 294, 358, 411, 455, 411, 358, 294, 216, 120, 720, 1320, 1824, 2250, 2612, 2921, 3186, 2921, 2612, 2250, 1824, 1320, 720, 5040, 9360, 13080, 16296, 19086, 21514, 23633, 25487, 23633, 21514, 19086, 16296, 13080, 9360, 5040
Offset: 1
The 6 permutations p of [3]: 123, 132, 213, 231, 312, 321 have (signed) displacement sets {p(i)-i, i=1..3}: {0}, {-1,0,1}, {-1,0,1}, {-2,1}, {-1,2}, {-2,0,2}, respectively. Numbers -2 and 2 occur twice, -1 and 1 occur thrice, and 0 occurs four times. So row n=3 is [2, 3, 4, 3, 2].
Triangle T(n,k) begins:
: 1 ;
: 1, 1, 1 ;
: 2, 3, 4, 3, 2 ;
: 6, 10, 13, 15, 13, 10, 6 ;
: 24, 42, 56, 67, 76, 67, 56, 42, 24 ;
: 120, 216, 294, 358, 411, 455, 411, 358, 294, 216, 120 ;
-
b:= proc(s, d) option remember; (n-> `if`(n=0, add(x^j, j=d),
add(b(s minus {i}, d union {n-i}), i=s)))(nops(s))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=1-n..n-1))(b({$1..n}, {})):
seq(T(n), n=1..8);
# second Maple program:
T:= (n, k)-> -add((-1)^j*binomial(n-abs(k), j)*(n-j)!, j=1..n):
seq(seq(T(n, k), k=1-n..n-1), n=1..9);
-
T[n_, k_] := -Sum[(-1)^j Binomial[n-Abs[k], j] (n-j)!, {j, 1, n}];
Table[Table[T[n, k], {k, 1-n, n-1}], {n, 1, 9}] // Flatten (* Jean-François Alcover, Feb 20 2021, after Alois P. Heinz *)
A125182
Triangle read by rows: T(n,k) is the number of permutations p of {1,2,...,n} such that the set {p(i)-i, i=1,2,...,n} has exactly k elements (1<=k<=n).
Original entry on oeis.org
1, 1, 1, 1, 2, 3, 1, 4, 12, 7, 1, 4, 38, 54, 23, 1, 8, 77, 248, 303, 83, 1, 6, 160, 824, 2008, 1636, 405, 1, 11, 285, 2320, 9449, 15789, 10352, 2113, 1, 10, 476, 5564, 37237, 102726, 133293, 70916, 12657, 1, 14, 799, 13172, 122708, 536900, 1158368, 1177168, 537373, 82297
Offset: 1
T(4,2) = 4 because we have 4123, 3412, 2143 and 2341.
Triangle starts:
1;
1, 1;
1, 2, 3;
1, 4, 12, 7;
1, 4, 38, 54, 23;
...
- Alois P. Heinz, Rows n = 1..12, flattened
- M. Alekseyev, E. Deutsch, and J. H. Steelman, Problem 11281, Amer. Math. Monthly, 116, No. 5, 2009, p. 465. - _Emeric Deutsch_, Apr 23 2009
-
n:=7: with(combinat): P:=permute(n): for j from 1 to n! do c[j]:=0 od: for j from 1 to n! do if nops({seq(P[j][i]-i,i=1..n)}) = 1 then c[1]:=c[1]+1 elif nops({seq(P[j][i]-i,i=1..n)}) = 2 then c[2]:=c[2]+1 elif nops({seq(P[j][i]-i,i=1..n)}) = 3 then c[3]:=c[3]+1 elif nops({seq(P[j][i]-i,i=1..n)}) = 4 then c[4]:=c[4]+1 elif nops({seq(P[j][i]-i,i=1..n)}) = 5 then c[5]:=c[5]+1 elif nops({seq(P[j][i]-i,i=1..n)}) = 6 then c[6]:=c[6]+1 elif nops({seq(P[j][i]-i,i=1..n)}) = 7 then c[7]:=c[7]+1 elif nops({seq(P[j][i]-i,i=1..n)}) = 8 then c[8]:=c[8]+1 elif nops({seq(P[j][i]-i,i=1..n)}) = 9 then c[9]:=c[9]+1 elif nops({seq(P[j][i]-i,i=1..n)}) = 10 then c[10]:=c[10]+1 else fi od: seq(c[i],i=1..n);
# second Maple program:
b:= proc(p, s) option remember; `if`(p={}, x^nops(s),
add(b(p minus {t}, s union {t+nops(p)}), t=p))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=1..n))(b({$1..n}, {})):
seq(T(n), n=1..9); # Alois P. Heinz, May 04 2014; revised, Sep 08 2018
-
b[i_, p_List, s_List] := b[i, p, s] = If[p == {}, x^Length[s], Sum[b[i+1, p ~Complement~ {t}, s ~Union~ {t+i}], {t, p}]]; T[n_] := Function[{p}, Table[ Coefficient[p, x, i], {i, 1, n}]][b[1, Range[n], {}]]; Table[T[n], {n, 1, 9}] // Flatten (* Jean-François Alcover, Feb 19 2015, after Alois P. Heinz *)
A259834
Number of permutations of [n] with no fixed points where the maximal displacement of an element equals n-1.
Original entry on oeis.org
0, 0, 1, 2, 5, 20, 97, 574, 3973, 31520, 281825, 2803418, 30704101, 367114252, 4757800705, 66432995030, 994204132517, 15875195019224, 269397248811073, 4841453414347570, 91856764780324165, 1834779993945449348, 38485629141294791201, 845788826477292504302
Offset: 0
a(2) = 1: 21.
a(3) = 2: 231, 312.
a(4) = 5: 2341, 3421, 4123, 4312, 4321.
-
a:= proc(n) option remember; `if`(n<3, [0, 0, 1][n+1],
((2*n^2-11*n+13)*a(n-1) +(2*n-5)*(n-3)*a(n-2))/(2*n-7))
end:
seq(a(n), n=0..30);
-
Join[{0, 0}, Table[DifferenceRoot[Function[{y, m}, {y[1 + m] == (n - m)*y[m] + (n - m) y[m - 1], y[0] == 0, y[1] == 1, y[2] == 1}]][n], {n, 2, 30}]] (* Benedict W. J. Irwin, Nov 03 2016 *)
Table[If[n<2, 0, Subfactorial[n-2]+2*Subfactorial[n-1]], {n,0,23}] (* Peter Luschny, Oct 04 2017 *)
-
def A259834_list(len):
L, u, x, y = [0], 1, 0, 0
for n in range(len):
y, x, u = x, x*n + u, -u
L.append(y + 2*x)
L[1] = 0
return L
print(A259834_list(23)) # Peter Luschny, Oct 04 2017
Showing 1-4 of 4 results.
Comments