cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A306237 a(n) = primorial prime(n)#/prime(n - 1).

Original entry on oeis.org

3, 10, 42, 330, 2730, 39270, 570570, 11741730, 281291010, 6915878970, 239378649510, 8222980095330, 319091739796830, 14299762385778870, 693386350578511590, 36278497172720993190, 1987938667108592728530, 128824943460332246817690, 8327475076517894939812170, 573657473228859495079173570
Offset: 2

Views

Author

Michael De Vlieger, Apr 10 2019

Keywords

Comments

Let primorial p_n# = A002110(n) and prime(n - 1) = A000040(n - 1). This sequence can be defined alternatively as p_(n - 2) * prime(n).

Examples

			a(2) = (2 * 3)/prime(2 - 1) = 6/2 = 3.
a(3) = (2*3*5)/prime(3 - 1) = 30/3 = 10.
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=2, 3,
          a(n-1)*(p-> p(n-2)/p(n-1)*p(n))(ithprime))
        end:
    seq(a(n), n=2..23);  # Alois P. Heinz, Jan 10 2021
  • Mathematica
    Array[Product[Prime@ i, {i, #}]/Prime[# - 1] &, 20, 2]
  • PARI
    a(n) = prod(k=1, n, prime(k))/prime(n-1); \\ Michel Marcus, Apr 13 2019

Formula

a(n) = A002110(n)/A000040(n - 1).