A306350 Number of paraphyletic coalescence sequences for 2n lineages, n each in 2 species.
0, 4, 162, 23328, 9072000, 7873200000, 13367512620000, 40367907740160000, 201793403949096960000, 1578804075215377920000000, 18484433452834116768000000000, 312162837144268369009766400000000, 7374810540967959718955457331200000000
Offset: 1
Keywords
Examples
For n=2, consider two red leaves R1 and R2 and two blue leaves B1 and B2. The a(2)=4 paraphyletic coalescence sequences, separated by semicolons, are (R1,R2), ((R1,R2),B1), (((R1,R2),B1),B2); (R1,R2), ((R1,R2),B2), (((R1,R2),B2),B1); (B1,B2), ((B1,B2),R1), (((B1,B2),R1),R2); and (B1,B2), ((B1,B2),R2), (((B1,B2),R2),R1).
Links
- N. A. Rosenberg, The shapes of neutral gene genealogies in two species: probabilities of monophyly, paraphyly, and polyphyly in a coalescent model, Evolution 57 (2003), 1465-1477.
Crossrefs
Programs
-
Mathematica
Table[3*(n!)^2*(2n - 2)!*(n - 1)/((n + 1)(2^(2 n - 3))), {n, 1, 30}]
Formula
a(n) = 3*(n!)^2*(2*n-2)!*(n-1)/((n+1)*2^(2*n-3)).
a(n) ~ 24*exp(-4*n)*n^(4*n-1/2)*Pi^(3/2). - Stefano Spezia, Apr 30 2024
Comments