A306279 Numbers congruent to 3 or 18 mod 22.
3, 18, 25, 40, 47, 62, 69, 84, 91, 106, 113, 128, 135, 150, 157, 172, 179, 194, 201, 216, 223, 238, 245, 260, 267, 282, 289, 304, 311, 326, 333, 348, 355, 370, 377, 392, 399, 414, 421, 436, 443, 458, 465, 480, 487, 502, 509, 524, 531, 546, 553, 568
Offset: 1
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,1,-1).
Crossrefs
Programs
-
Maple
seq(seq(22*i+j, j=[3, 18]), i=0..200);
-
Mathematica
Select[Range[200], MemberQ[{3, 18}, Mod[#, 22]] &] Flatten[Table[{22n + 3, 22n + 18}, {n, 0, 43}]] (* Alonso del Arte, Feb 18 2019 *)
-
PARI
for(n=3, 678, if((n%22==3) || (n%22==18), print1(n, ", ")))
-
PARI
vector(62,n,11*n-6+2*(-1)^n)
-
PARI
Vec(x*(3 + 15*x + 4*x^2) / ((1 - x)^2*(1 + x)) + O(x^40)) \\ Colin Barker, Feb 07 2019
-
Scala
(3 to 949 by 22).union(18 to 942 by 22).sorted // Alonso del Arte, Feb 18 2019
Formula
a(n) = 11*n - 6 + 2*(-1)^n.
a(n) = 11*n - A105398(n + 4).
From Colin Barker, Feb 07 2019: (Start)
G.f.: x*(3 + 15*x + 4*x^2) / ((1 - x)^2*(1 + x)).
a(n) = a(n - 1) + a(n - 2) - a(n - 3) for n > 3. (End)
E.g.f.: 4 + (11*x - 6)*exp(x) + 2*exp(-x). - David Lovler, Sep 08 2022