cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A306293 Number of binary words of length n such that in every prefix and in every suffix the number of 0's and the number of 1's differ by at most two.

Original entry on oeis.org

1, 2, 4, 6, 10, 16, 26, 42, 70, 110, 194, 288, 550, 754, 1586, 1974, 4630, 5168, 13634, 13530, 40390, 35422, 120146, 92736, 358390, 242786, 1071074, 635622, 3205030, 1664080, 9598706, 4356618, 28763350, 11405774, 86224514, 29860704, 258542470, 78176338
Offset: 0

Views

Author

Alois P. Heinz, Feb 04 2019

Keywords

Comments

All terms with index n > 0 are even.

Examples

			a(3) = 6: 001, 010, 011, 100, 101, 110.
a(4) = 10: 0010, 0011, 0100, 0101, 0110, 1001, 1010, 1011, 1100, 1101.
a(5) = 16: 00101, 00110, 01001, 01010, 01011, 01100, 01101, 01110, 10001, 10010, 10011, 10100, 10101, 10110, 11001, 11010.
a(6) = 26: 001010, 001011, 001100, 001101, 001110, 010010, 010011, 010100, 010101, 010110, 011001, 011010, 011100, 100011, 100101, 100110, 101001, 101010, 101011, 101100, 101101, 110001, 110010, 110011, 110100, 110101.
a(7) = 42: 0010101, 0010110, 0011001, ..., 1100110, 1101001, 1101010.
a(8) = 70: 00101010, ..., 00111100, ..., 11000011, ..., 11010101.
		

Crossrefs

Bisections of a(n+2)/2 give: A007689 (even part), A001906(n+2) (odd part).

Programs

  • Maple
    a:= n-> `if`(n<2, 1+n, 2*(<<0|1|0|0>, <0|0|1|0>, <0|0|0|1>,
            <-6|23|-22|8>>^iquo(n-2, 2, 'r').[<<2, 5, 13, 35>>,
            <<3, 8, 21, 55>>][1+r])[1, 1]):
    seq(a(n), n=0..50);

Formula

G.f.: -(x+1)*(4*x^7-4*x^6-7*x^5-5*x^4+5*x^3+5*x^2-x-1) / ((3*x^2-1) *(2*x^2-1) *(x^2+x-1) *(x^2-x-1)).
a(n) <= A306306(n).

A306315 Number of binary words of length n such that the difference between the number of 1's and the number of 0's is in the interval [-2,3] for every prefix and in the interval [-3,2] for every suffix.

Original entry on oeis.org

1, 2, 4, 6, 12, 18, 35, 54, 103, 162, 307, 486, 926, 1458, 2823, 4374, 8688, 13122, 26962, 39366, 84285, 118098, 265147, 354294, 838625, 1062882, 2664636, 3188646, 8499263, 9565938, 27197074, 28697814, 87261592, 86093442, 280596321, 258280326, 903916589
Offset: 0

Views

Author

Alois P. Heinz, Feb 06 2019

Keywords

Examples

			a(3) = 6: 001, 010, 011, 100, 101, 110.
a(4) = 12: 0010, 0011, 0100, 0101, 0110, 1000, 1001, 1010, 1011, 1100, 1101, 1110.
a(5) = 18: 00101, 00110, 01001, 01010, 01011, 01100, 01101, 01110, 10001, 10010, 10011, 10100, 10101, 10110, 11000, 11001, 11010, 11100.
a(6) = 35: 001010, 001011, 001100, 001101, 001110, 010010, 010011, 010100, 010101, 010110, 011000, 011001, 011010, 011100, 100010, 100011, 100100, 100101, 100110, 101000, 101001, 101010, 101011, 101100, 101101, 101110, 110001, 110010, 110011, 110100, 110101, 110110, 111000, 111001, 111010.
		

Crossrefs

Odd bisection gives A008776.

Programs

  • Mathematica
    LinearRecurrence[{0,11,0,-46,0,90,0,-81,0,28,0,-3},{1,2,4,6,12,18,35,54,103,162,307,486},40] (* Harvey P. Dale, Sep 17 2019 *)

Formula

G.f.: -(2*x^11-18*x^9+9*x^8+48*x^7+3*x^6-44*x^5-14*x^4+16*x^3+7*x^2-2*x-1) / ((3*x^2-1) *(x^2+x-1) *(x^2-x-1) *(x^3-2*x^2-x+1) *(x^3+2*x^2-x-1)).
Showing 1-2 of 2 results.